Vol. 102
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-01-20
A Super Wideband Washable Antenna Demonstrated on Flannel
By
Progress In Electromagnetics Research Letters, Vol. 102, 95-100, 2022
Abstract
In this paper, a textile based fractal monopole antenna is proposed with a defected ground structure for wearable application. The proposed antenna is designed on Flannel fabric with a thickness of 1 mm, which translates to 0.03λ at 10 GHz. The total dimensions of proposed antenna is 60 x 40 x 1 mm. The measured fractional bandwidth of the antenna is 110.1%. The proposed flannel based conductive ink antenna is characterized, and the results for washable fabric are illustrated. Both simulated and measured results are presented. The concept of application of low cost conductive ink on flannel fabric is demonstrated using conventional screen printing method. The antenna is characterized for commercial wash ability; the measurement results are invariant with the machine wash of the flannel fabric indicating robustness of the proposed method of fabrication of the antenna element.
Citation
Siddaraju Meghana, Gulur Sadananda Karthikeya, Bagepalli Keshavappa Sujatha, and Prabhakar Parimala, "A Super Wideband Washable Antenna Demonstrated on Flannel," Progress In Electromagnetics Research Letters, Vol. 102, 95-100, 2022.
doi:10.2528/PIERL21120801
References

1. Mahmud, M. S. and S. Dey, "Design and performance analysis of a compact and conformal super wide band textile antenna for wearable body area applications," 2012 6th European Conference on Antennas and Propagation (EUCAP), 1-5, 2012.

2. Dey, S., M. S. Arefin, and N. C. Karmakar, "Design and experimental analysis of a novel compact and flexible super wide band antenna for 5G," IEEE Access, Vol. 9, 46698-46708, 2021.
doi:10.1109/ACCESS.2021.3068082

3. Manohar, M., U. K. Nemani, R. S. Kshetrimayum, and A. K. Gogoi, "A novel super wideband notched printed trapezoidal monopole antenna with triangular tapered feedline," 2014 International Conference on Signal Processing and Communications (SPCOM), 1-6, 2014.

4. Hasan, M. R., M. A. Riheen, P. Sekhar, and T. Karacolak, "Compact CPW-fed circular patch flexible antenna for super-wideband applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 10, 1069-1073, 2020.
doi:10.1049/iet-map.2020.0155

5. Jalil, M. E., M. K. A. Rahim, N. A. Samsuri, N. A. Murad, N. Othman, and H. A. Majid, "On-body investigation of dual band diamond textile antenna for wearable applications at 2.45 GHz and 5.8 GHz," 2013 7th European Conference on Antennas and Propagation (EuCAP), 414-417, 2013.

6. Mao, C. X., D. Vital, D. H. Werner, Y. Wu, and S. Bhardwaj, "Dual-polarized embroidered textile armband antenna array with omnidirectional radiation for on-/off-body wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2575-2584, 2019.
doi:10.1109/TAP.2019.2951517

7. Da Conceicao Andrade, A., I. P. Fonseca, S. F. Jilani, and A. Alomainy, "Reconfigurable textile-based ultra-wideband antenna for wearable applications," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016.

8. Chahat, N., M. Zhadobov, L. Le Coq, and R. Sauleau, "Wearable endfire textile antenna for on-body communications at 60 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 799-802, 2012.
doi:10.1109/LAWP.2012.2207698

9. Benavides, B., R. A. Lituma, P. A. Chasi, and L. F. Guerrero, "A novel modified hexagonal shaped fractal antenna with multi band notch characteristics for UWB applications," 2018 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 830-833, 2018.
doi:10.1109/APWC.2018.8503774

10. Yang, H. and W. Yang, "An ultra-wideband microstrip antenna based on Koch fractal resonance unit and CSRRs defective ground unit," 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP), 2020.

11. Sabban, A., "New fractal compact printed antennas," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2197-2198, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8073141

12. Qiang, J., F. Xu, and W. Fan, "Reducing mutual coupling of millimeter wave array antennas by fractal defected ground structure," 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 1-3, 2018.

13. Sakthi, A., R. S. Nair, A. Alphones, and S. Raju, "Design and equivalent circuit analysis of textile antenna for WLAN and WBAN application," 2016 IEEE Region 10 Conference (TENCON), 1068-1074, 2016.
doi:10.1109/TENCON.2016.7848171

14. Hong, H., J. Hu, and X. Yan, "UV curable conductive ink for the fabrication of textile-based conductive circuits and wearable UHF RFID tags," ACS Applied Materials & Interfaces, Vol. 11, No. 30, 27318-27326, 2019.
doi:10.1021/acsami.9b06432

15. Siden, J., M. K. Fein, A. Koptyug, and H.-E. Nilsson, "Printed antennas with variable conductive ink layer thickness," IET Microwaves, Antennas & Propagation, Vol. 1, No. 2, 401-407, 2007.
doi:10.1049/iet-map:20060021

16. Amendola, S., A. Palombi, and G. Marrocco, "Inkjet printing of epidermal RFID antennas by self-sintering conductive ink," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1561-1569, March 2018.
doi:10.1109/TMTT.2017.2767594