Vol. 102
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-02-10
Analysis for Six-Pole Outer Rotor Hybrid Magnetic Bearing
By
Progress In Electromagnetics Research Letters, Vol. 102, 151-159, 2022
Abstract
In order to solve the nonlinear and coupling problems of three-pole hybrid magnetic bearing, a six-pole outer rotor hybrid magnetic bearing (HMB) is proposed. Firstly, the structure and working principle of the six-pole outer rotor HMB are introduced. Secondly, the linearity and coupling characteristics curves between radial suspension force and control current are analyzed and verified by the finite element method. In comparison with the analysis results of the three-pole HMB, there is no electromagnetic coupling between radial two degrees of freedom of the six-pole outer rotor HMB, and the nonlinear problem of force-current characteristic is solved. Finally, an experimental platform is built. The research results show that the maximum bearing capacity of the six-pole outer rotor HMB is 32.3% higher than that of the three-pole HMB. The suspension force-current characteristic experiment shows that the suspension force-current properties of the six pole outer rotor hybrid magnetic bearing can be considered linear near the equilibrium position, and there is no magnetic coupling between two radial degrees of freedom of the six pole outer rotor HMB near the equilibrium position.
Citation
Gai Liu Huangqiu Zhu , "Analysis for Six-Pole Outer Rotor Hybrid Magnetic Bearing," Progress In Electromagnetics Research Letters, Vol. 102, 151-159, 2022.
doi:10.2528/PIERL21121001
http://www.jpier.org/PIERL/pier.php?paper=21121001
References

1. Gu, H., H.-Q. Zhu, and Y.-Z. Hua, "Soft sensing modeling of magnetic suspension rotor displacements based on continuous hidden markov model," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, Apr. 2018.
doi:10.1109/TASC.2017.2784397

2. Ye, X. and P. Bao, "Finite element analysis of fault tolerance method for eight-pole hybrid magnetic bearing," 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 1-2, 2020.

3. Usman, I., M. Paone, K. Smeds, and X. Lu, "Radially biased axial magnetic bearings/motors for precision rotary-axial spindles," IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 3, 411-420, Jun. 2011.
doi:10.1109/TMECH.2011.2119323

4. Le, Y. and K. Wang, "Design and optimization method of magnetic bearing for high-speed motor considering eddy current effects," IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 4, 2061-2072, Aug. 2016.
doi:10.1109/TMECH.2016.2569822

5. Peng, C., J. Sun, X. Song, and J. Fang, "Frequency-varying current harmonics for active magnetic bearing via multiple resonant controllers," IEEE Transactions on Industrial Electronics, Vol. 64, No. 1, 517-526, Jan. 2017.
doi:10.1109/TIE.2016.2598723

6. Gu, H., H. Zhu, and Y. Hua, "Soft sensing modeling of magnetic suspension rotor displacements based on continuous hidden markov model," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, Apr. 2018.
doi:10.1109/TASC.2017.2784397

7. Yu, J. and C. Zhu, "A multifrequency disturbances identification and suppression method for the self-sensing AMB rotor system," IEEE Transactions on Industrial Electronics, Vol. 65, No. 8, 6382-6392, Aug. 2018.
doi:10.1109/TIE.2017.2784340

8. Zhang, W.-Y., H.-Q. Zhu, Z.-B. Yang, X.-D. Sun, and Y. Yuan, "Nonlinear model analysis and 'switching model" of AC-DC three degree of freedom hybrid magnetic bearing," IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 2, 1102-1115, Apr. 2016.
doi:10.1109/TMECH.2015.2463676

9. Zhang, W.-Y., H.-K. Yang, L. Cheng, and H.-Q. Zhu, "Modeling based on exact segmentation of magnetic eld for a centripetal force type-magnetic bearing," IEEE Transactions on Industrial Electronics, Vol. 67, No. 9, 7691-7701, Sept. 2020.

10. Wang, S.-S., H.-Q. Zhu, M.-Y. Wu, and W.-Y. Zhang, "Active disturbance rejection decoupling control for three-degree-of-freedom six-pole active magnetic bearing based on BP neural network," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-5, Jun. 2020.

11. Liu, G., H.-Q. Zhu, and W.-Y. Zhang, "Principle and performance analysis for six-pole hybrid magnetic bearing with a secondary air gap," Electronics Letters, Vol. 57, No. 14, 548-549, 2021.
doi:10.1049/ell2.12098