Vol. 102
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-01-30
An Ultra-Broadband Unidirectional Coaxial Waveguide Based on YIG
By
Progress In Electromagnetics Research Letters, Vol. 102, 119-125, 2022
Abstract
The planar physical model of ultra-broadband unidirectional waveguide based on surface magnetoplasmons (SMPs) has been derived and calculated in detail, but the coaxial physical model of ultra-broadband unidirectional waveguide based on SMPs has not been reported. Based on the gyromagnetic properties of Ferrite (taken yttrium iron garnet as an example, abbreviated as YIG), a novel ultra-broadband unidirectional coaxial waveguide is proposed in this paper. The basic model of the waveguide is a multilayer coaxial waveguide system composed of metal-layer-YIG-YIG-metal wire. The magnetization vectors of two middle YIGs are equal and opposite. Theoretical analysis and simulation results show that the waveguide supports two unidirectional transmissions, and both unidirectional bands have excellent properties of immune scattering and back reflection. The waveguide system has the characteristics of simple structure, immune scattering, and ultra-broadband unidirectional band, which is expected to be used in all-photon communication system.
Citation
Dechun Zheng Zhuo-Yuan Wang Qian Shen Xu Li , "An Ultra-Broadband Unidirectional Coaxial Waveguide Based on YIG," Progress In Electromagnetics Research Letters, Vol. 102, 119-125, 2022.
doi:10.2528/PIERL21121703
http://www.jpier.org/PIERL/pier.php?paper=21121703
References

1. Tsakmakidis, K. L., et al., "Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering," Science, Vol. 356, 1260, 2017.
doi:10.1126/science.aam6662

2. Zou, J., et al., "High-efficiency tunable Y-branch power splitters at terahertz frequencies," Optics Communications, Vol. 387, 153, 2017.
doi:10.1016/j.optcom.2016.11.053

3. Li, W.-J., et al., "A super-continuum based all optical multi-channel source generation in radio-on-fiber system," Journal of Beijing University of Posts and Telecommunications, Vol. 34, 67, 2011.

4. Rechtsman, M. C., et al., "Photonic floquet topological insulators," Nature, Vol. 496, 196, 2013.
doi:10.1038/nature12066

5. Zhang, X., W. Li, and X. Jiang, "Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguidesplitter and bender," Applied Physics Letters, Vol. 100, 1108, 2012.

6. Deng, X., L. Hong, X. Zheng, and L. Shen, "One-way regular electromagnetic mode immune to backscattering," Applied Optics, Vol. 54, 4608, 2015.
doi:10.1364/AO.54.004608

7. Zhu, G., J. Wen, and L. Wang, "Terahertz optical properties of surface magnetoplasmons in both prism-semiconductor-metal and prism-metal-semiconductor coupled systems," Optics Communications, Vol. 474, 126068, 2020.
doi:10.1016/j.optcom.2020.126068

8. Shen, L., Y. You, Z. Wang, and X. Deng, "Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies," Optics Express, Vol. 23, 950, 2015.
doi:10.1364/OE.23.000950

9. Hong, L., et al., "Magnetic field assisted beam-scanning leaky-wave antenna utilizing one-way waveguide," Scientific Reports, Vol. 9, 213, 2019.
doi:10.1038/s41598-018-36135-3

10. Liu, K., T. Amir, and S. He, "One-way surface magnetoplasmon cavity and its application for nonreciprocal devices," Optics Letters, Vol. 41, 800, 2016.
doi:10.1364/OL.41.000800

11. Hartstein, A., E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, "Surface polaritons on semi-infinite gyromagnetic media," Journal of Physics C: Solid State Physic, Vol. 6, 1266, 1973.
doi:10.1088/0022-3719/6/7/016

12. Shen, Q., L. Shen, Y. Shen, Y. You, and X. Deng, "Ultra-broadband unidirectional waveguide based on magnetic domain wall," Journal of Data Acquisition and Processing, Vol. 34, 659, 2019.