Vol. 103
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-02-18
2D Hybrid Magnetic Model Calculation in Axisymmetric Device
By
Progress In Electromagnetics Research Letters, Vol. 103, 15-23, 2022
Abstract
This paper proposes a 2D semi-analytical electromagnetic model to compute the magnetic field and eddy current generated by a variable current density along a conducting billet of induction heater. The developed model is based on the combination of the discretization method and the Biot-Savart theory. Firstly, the analytical solutions of the vector potential and the magnetic field are calculated in all elements discretized cylindrical geometry using the law of Biot-Savart. Then, the total field is determined by the contribution of the superposition of each element of the discretized geometry. The eddy currents are computed using the Ampere law, and it also allows us to determine the exact resulting heating power density, which is the heat source of the thermal problem. The results obtained are in agreement with those obtained using finite element method. Therefore, the developed magnetic model presents a fast and accurate tool for the design of induction heating devices.
Citation
Ammar Abdi , "2D Hybrid Magnetic Model Calculation in Axisymmetric Device," Progress In Electromagnetics Research Letters, Vol. 103, 15-23, 2022.
doi:10.2528/PIERL22010201
http://www.jpier.org/PIERL/pier.php?paper=22010201
References

1. Rudnev, V., D. Loveless, R. Cook, and M. Black, Handbook of Induction Heating, Marcel Dekker, New York, 2003.

2. Abdi, A., Y. Ouazir, and G. Barakat, Y. Amara, "Permanent magnet linear induction heating device: New topology enhancing performances," COMPEL --- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 37, No. 5, 1755-1767, Oct. 2018.
doi:10.1108/COMPEL-01-2018-0026

3. Ho, S. L., J. Wang, and Y. H. Wang, "A novel crossed traveling wave induction heating system and nite element analysis of eddy current and temperature distributions," IEEE Transactions on Magnetics, Vol. 45, No. 10, 4777-4780, Oct. 2009.
doi:10.1109/TMAG.2009.2021667

4. Ouazir, Y., A. Abdi, and H. Bensaidane, "2D analytical solution of transverse flux induction heating of the aluminum plates," 2012 XXth International Conference on Electrical Machines, 2733-2738, Marseille, France, Sep. 2012.

5. Tavakoli, M. H., H. Karbaschi, and F. Samavat, "Computational modeling of induction heating process," Progress In Electromagnetics Research Letters, Vol. 11, 93-102, 2009.
doi:10.2528/PIERL09071509

6. Mach, F., P. Karban, I. Dolezel, P. Sima, and Z. Jelinek, "Model of induction heating of rotating non-magnetic billets and its experimental verification," IEEE Transactions on Magnetics, Vol. 50, No. 2, 309-312, Feb. 26, 2014.
doi:10.1109/TMAG.2013.2286497

7. Han, W., K. T. Chau, Z. Zhang, and C. Jiang, "Single-source multiple-coil homogeneous induction heating," IEEE Transactions on Magnetics, Vol. 53, No. 11, 1-6, Jun. 2017.
doi:10.1109/TMAG.2017.2717867

8. Moro, F. and L. Codecasa, "A 3-D hybrid cell method for induction heating problems," IEEE Transaction on Magnetics, Vol. 53, No. 6, 1-4, Jun. 2017.
doi:10.1109/TMAG.2017.2659801

9. Qin, Z., H. Talleb, and Z. Ren, "A proper generalized decomposition-based solver for nonlinear magnetothermal problems," IEEE Transactions on Magnetics, Vol. 52, No. 1, 1-11, Oct. 2016.

10. D'Angelo, L. A. M. and H. De Gersem, "Quasi-3D finite-element method for simulating cylindrical induction-heating devices," IEEE Transactions on Magnetics, Vol. 2, 134-141, Aug. 2017.

11. Paul, S., J. Wright, and J. Z. Bird, "3-D steady-state eddy current dampingand stiffness for a finite thickness conductive plate," IEEE Transactions on Magnetics, Vol. 50, No. 11, 6301404, Nov. 2014.

12. Boughrara, K., F. Dubas, and R. Ibtiouen, "2-D exact analytical method for steady-state heat transfer prediction in rotating electrical machines," IEEE Transactions on Magnetics, Vol. 54, No. 9, 1-19, Sept. 2018.
doi:10.1109/TMAG.2018.2851212

13. Jin, P., Y. Tian, Y. Lu, Y. Guo, G. Lei, and J. Zhu, "3-D analytical magnetic field analysis of the eddy current coupling with Halbach magnets," IEEE Transactions on Magnetics, Vol. 56, No. 1, 1-4, Jan. 2020.
doi:10.1109/TMAG.2019.2950389

14. Abdi, A., Y. Ouazir, G. Barakat, and Y. Amara, "Transient quasi-3D magneto-thermal analytical solution in pm induction heating device," COMPEL --- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 39 , No. 5, 1131-1144, 2020.
doi:10.1108/COMPEL-01-2020-0054

15. Lubin, T. and A. Rezzoug, "3-D analytical model for axial-flux eddy-current couplings and brakes under steady-state conditions," IEEE Transactions on Magnetics, Vol. 51, No. 10, 1-12, Oct. 2015.
doi:10.1109/TMAG.2015.2455955

16. Diriye, A., Y. Amara, and G. Barakat, "Three-dimensional modeling of permanents magnets synchronous machines using a 3D reluctance network," 2018 XIII International Conference on Electrical Machines, 2304-2310, Alexandroupoli, Greece, Sep. 2018.

17. Jin, P., Y. Yuan, J. Minyi, F. Shuhua, L. Heyun, H. Yang, and S. L. Ho, "3-D analytical magnetic field analysis of axial ux permanent magnet machine," IEEE Transactions on Magnetics, Vol. 50, No. 11, 8103504, Nov. 2014.

18. Sahu, R., P. Pellerey, and K. Laskaris, "Eddy current loss model unifying the effects of reaction field and non-homogeneous 3-D magnetic field," IEEE Transactions on Magnetics, Vol. 56, No. 2, 1-4, Jan. 13, 2020.
doi:10.1109/TMAG.2019.2953110

19. Sun, X., S. Luo, L. Chen, R. Zhao, and Z. Yang, "Suspension force modeling and electromagnetic characteristics analysis of an interior bearingless permanent magnet synchronous motor," Progress In Electromagnetics Research B, Vol. 69, 31-45, 2016.
doi:10.2528/PIERB16051908

20. Verez, G., G. Barakat, and Y. Amara, "Influence of slots and rotor poles combinations on noise and vibrations of magnetic origins in `U'-core flux-switching permanent magnet machines," Progress In Electromagnetics Research B, Vol. 61, 149-168, 2014.
doi:10.2528/PIERB14100902