Vol. 103
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-02-20
Study on the Effect of the Feedline Inductance in Wideband Tunable Band Pass Combline Filters
By
Progress In Electromagnetics Research Letters, Vol. 103, 25-30, 2022
Abstract
This letter proposes a novel analysis and design method of a continuously adjustable bandpass combline filter. It investigates the feedline design specifications and introduces an external quality factor (Qext) tuning structure to achieve a constant fractional bandwidth over 60% tuning bandwidth. The design approach allows to determine the optimum feedline structure for the filter andis verified by full-wave simulation and measurement. The results show a constant fractional bandwidth of 4.5% over the entire operating frequency range between 225-400 MHz.
Citation
Seyed Mostafa Mousavi, Javad Soleiman Meiguni, and David Pommerenke, "Study on the Effect of the Feedline Inductance in Wideband Tunable Band Pass Combline Filters," Progress In Electromagnetics Research Letters, Vol. 103, 25-30, 2022.
doi:10.2528/PIERL22011304
References

1. Ebrahimi, A., T. Baum, J. Scott, and K. Ghorbani, "Continuously tunable dual-mode bandstop filter," IEEE Microwave and Wireless Components Letters, 419-421, 2018.
doi:10.1109/LMWC.2018.2821841

2. Jones, A. T. R. and M. Daneshmand, "Miniaturized folded ridged quarter-mode substrate integrated waveguide RF MEMS tunable bandpass filter," IEEE Access, Vol. 8, 115837-115847, 2020.
doi:10.1109/ACCESS.2020.3004116

3. Danilov, Y. Y., G. G. Denisov, M. A. Khozin, A. Panin, and Y. Rodin, "Millimeter-wave tunable notch filter based on waveguide extension for plasma diagnostics," IEEE Transactions on Plasma Science, Vol. 42, No. 6, 1685-1689, 2014.
doi:10.1109/TPS.2014.2318352

4. Polat, E., R. Reese, M. Jost, C. Schuster, M. Nickel, R. Jakoby, and H. Maune, "Tunable liquid crystal filter in nonradiative dielectric waveguide technology at 60 GHz," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 1, 44-46, 2019.
doi:10.1109/LMWC.2018.2884152

5. Mansour, A. A. and T. S. Kalkur, "Switchable and tunable BAW duplexer based on ferroelectric material," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 63, No. 12, 2224-2230, 2016.
doi:10.1109/TUFFC.2016.2614941

6. Renedo, M. S., R. G. Garcia, J. I. Alonso, and C. B. Rodriguez, "Tunable combline filter with continuous control of center frequency and bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 191-199, 2005.
doi:10.1109/TMTT.2004.839309

7. Penalva, G. T., G. L. Risue~no, and J. I. Alonso, "A simple method to design wide-band electronically tunable combline filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 1, 172-177, 2002.
doi:10.1109/22.981262

8. Kurudere, S. and V. B. Erturk, "Novel microstrip fed mechanically tunable combline cavity filter," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 11, 578-580, 2013.
doi:10.1109/LMWC.2013.2281432

9. Renedo, M. S., "High-selectivity tunable planar combline filter with source/load-multiresonator coupling," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, 513-515, 2007.
doi:10.1109/LMWC.2007.899313

10. Cameron, R. J., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 4, 433-442, 1999.
doi:10.1109/22.754877

11. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, 2003.
doi:10.1109/TMTT.2002.806937

12. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619