Vol. 104

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-05-26

Design of a Double-Mode Plasmonic Wavelength Filter Using a Defective Circular Nano-Disk Resonator Coupled to Two MIM Waveguides

By Imane Zegaar, Abdesselam Hocini, Ahlam Harhouz, Djamel Khedrouche, and Hocine Bensalah
Progress In Electromagnetics Research Letters, Vol. 104, 67-75, 2022
doi:10.2528/PIERL22012905

Abstract

Various resonance modes, high transmission, and quality factor with simple design are highly desirable parameters for realizing nano-integrated plasmonic devices. In the context, a plasmonic structure consisting of two straight waveguides MIM coupled one central defective circular nano-disk resonator (CNDR) is proposed in this work. The insulator and metal of the proposed plasmonic filter are air and silver, respectively. The plasmonic filter is designed and investigated numerically by using the finite difference time domain method (FDTD). Our simulation results indicate that the proposed plasmonic filter has two transmission peaks with a maximum transmission equal to 80 and 70 percent. The advantages of the proposed filter are the various resonance modes with high transmission peaks and high quality factor which reaches 35.27. In view of these features, our proposed structure of plasmonic filter has the potential to be employed in various devices such as plasmonic demultiplexers and sensors for optical communication purposes.

Citation


Imane Zegaar, Abdesselam Hocini, Ahlam Harhouz, Djamel Khedrouche, and Hocine Bensalah, "Design of a Double-Mode Plasmonic Wavelength Filter Using a Defective Circular Nano-Disk Resonator Coupled to Two MIM Waveguides," Progress In Electromagnetics Research Letters, Vol. 104, 67-75, 2022.
doi:10.2528/PIERL22012905
http://www.jpier.org/PIERL/pier.php?paper=22012905

References


    1. Maier, S. A., et al., Plasmonics: Fundamentals and Applications, Vol. 1, Springer, 2007.
    doi:10.1007/0-387-37825-1

    2. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, No. 3, 035504, 2017.
    doi:10.1063/1.4977782

    3. Wang, L., et al., "Hybrid dirac semimetal-based photodetector with efficient low-energy photon harvesting," Light: Science & Applications, Vol. 11, No. 1, 1-10, 2022.
    doi:10.1038/s41377-021-00680-w

    4. Agarwal, A., M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, No. 19, 8938-8946, 2018.
    doi:10.1039/C8NR01395K

    5. Oliverio, M., S. Perotto, G. C. Messina, L. Lovato, and F. De Angelis, "Chemical functionalization of plasmonic surface biosensors: A tutorial review on issues, strategies, and costs," ACS Applied Materials & Interfaces, Vol. 9, No. 35, 29394-29411, 2017.
    doi:10.1021/acsami.7b01583

    6. Balbinot, S., A. M. Srivastav, J. Vidic, I. Abdulhalim, and M. Manzano, "Plasmonic biosensors for food control," Trends in Food Science & Technology, 2021.

    7. Janković, N. and N. Cselyuszka, "High-resolution plasmonic filter and refractive index sensor based on perturbed square cavity with slits and orthogonal feeding scheme," Plasmonics, Vol. 14, No. 3, 555-560, 2019.
    doi:10.1007/s11468-018-0834-z

    8. Zhang, Y., S. Li, Z. Chen, P. Jiang, R. Jiao, Y. Zhang, L. Wang, and L. Yu, "Ultra-high sensitivity plasmonic nanosensor based on multiple fano resonance in the MDM side-coupled cavities," Plasmonics, Vol. 12, No. 4, 1099-1105, 2017.
    doi:10.1007/s11468-016-0363-6

    9. Shi, L., J. He, C. Tan, Y. Liu, J. Hu, X. Wu, M. Chen, X. Zhang, and S. Zhan, "Plasmonic filter with highly selective wavelength in a fixed dimension based on the loaded rectangular ring cavity," Optics Communications, Vol. 439, 125-128, 2019.
    doi:10.1016/j.optcom.2019.01.058

    10. Butt, M. A., N. L. Kazanskiy, and S. N. Khonina, "Highly integrated plasmonic sensor design for the simultaneous detection of multiple analytes," Current Applied Physics, Vol. 20, No. 11, 1274-1280, 2020.
    doi:10.1016/j.cap.2020.08.020

    11. Veronis, G. and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Applied Physics Letters, Vol. 87, No. 13, 131102, 2005.
    doi:10.1063/1.2056594

    12. Lu, H., G. X. Wang, and X. M. Liu, "Manipulation of light in MIM plasmonic waveguide systems," Chinese Science Bulletin, Vol. 58, No. 30, 3607-3616, 2013.
    doi:10.1007/s11434-013-5989-6

    13. Diniz, L. O., F. D. Nunes, E. Marega, J. Weiner, and B.-H. V. Borges, "Metal-insulator-metal surface plasmon polariton waveguide filters with cascaded transverse cavities," Journal of Lightwave Technology, Vol. 29, No. 5, 714-720, 2010.
    doi:10.1109/JLT.2010.2101582

    14. Rakhshani, M. R. and M. A. Mansouri-Birjandi, "High sensitivity plasmonic refractive index sensing and its application for human blood group identification," Sensors and Actuators B: Chemical, Vol. 249, 168-176, 2017.
    doi:10.1016/j.snb.2017.04.064

    15. Huang, S., C. Song, G. Zhang, and H. Yan, "Graphene plasmonics: Physics and potential applications," Nanophotonics, Vol. 6, No. 6, 1191-1204, 2017.
    doi:10.1515/nanoph-2016-0126

    16. Li, G., X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, "A novel plasmonic resonance sensor based on an infrared perfect absorber," Journal of Physics D: Applied Physics, Vol. 45, No. 20, 205102, 2012.
    doi:10.1088/0022-3727/45/20/205102

    17. Ye, J. and P. van Dorpe, "Improvement of figure of merit for gold nanobar array plasmonic sensors," Plasmonics, Vol. 6, No. 4, 665-671, 2011.
    doi:10.1007/s11468-011-9249-9

    18. Harhouz, A. and A. Hocini, "Highly sensitive plasmonic temperature sensor based on fano resonances in MIM waveguide coupled with defective oval resonator," Optical and Quantum Electronics, Vol. 53, No. 8, 1-11, 2021.
    doi:10.1007/s11082-021-03088-3

    19. Zhan, G., R. Liang, H. Liang, J. Luo, and R. Zhao, "Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities," Optics Express, Vol. 22, No. 8, 9912-9919, 2014.
    doi:10.1364/OE.22.009912

    20. Shang, C., Z. Chen, L.-L. Wang, Y.-F. Zhao, G.-Y. Duan, and L. Yu, "Characteristics of the coupled-resonator structure based on a stub resonator and a nanodisk resonator," Chinese Physics Letters, Vol. 31, No. 11, 114202, 2014.
    doi:10.1088/0256-307X/31/11/114202

    21. Rafiee, E., R. Negahdari, and F. Emami, "Plasmonic multi channel filter based on split ring resonators: Application to photothermal therapy," Photonics and Nanostructures-Fundamentals and Applications, Vol. 33, 21-28, 2019.

    22. Chou, Y.-F., C.-T. Chou Chao, H. J. Huang, M. Raziq, and H.-P. Chiang, "Ultrawide bandgap and high sensitivity of a plasmonic metal-insulator-metal waveguide filter with cavity and baffles," Nanomaterials, Vol. 10, No. 10, 2030, 2020.
    doi:10.3390/nano10102030

    23. Hocini, A., T. Boumaza, M. Bouchemat, F. Royer, D. Jamon, and J. J. Rousseau, "Birefringence in magneto-optical rib waveguides made by Sio2/Tio2 doped with γ-Fe2O3," Microelectronics Journal, Vol. 39, No. 1, 99-102, 2008.
    doi:10.1016/j.mejo.2007.09.012

    24. Achi, S. E., A. Hocini, H. Ben Salah, and A. Harhouz, "Refractive index sensor MIM based waveguide coupled with a slotted side resonator," Progress In Electromagnetics Research M, Vol. 96, 147-156, 2020.
    doi:10.2528/PIERM20061803

    25. Lai, W., K. Wen, J. Lin, Z. Guo, Q. Hu, and Y. Fang, "Plasmonic filter and sensor based on a subwavelength end-coupled hexagonal resonator," Applied Optics, Vol. 57, No. 22, 6369-6374, 2018.
    doi:10.1364/AO.57.006369

    26. Ben Salah, H., A. Hocini, M. N. E. Temmar, and D. Khedrouche, "Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor," Chinese Journal of Physics, Vol. 61, 86-97, 2019.
    doi:10.1016/j.cjph.2019.07.006

    27. Hocini, A., et al., "A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal-insulator-metal structure," Optical and Quantum Electronics, Vol. 52, No. 7, 1-10, 2020.
    doi:10.1007/s11082-020-02446-x