Vol. 104
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-06-14
A Novel Low-Profile Broadband Direct-Feed mm -Wave Antenna Array for 5G Smartphone Applications
By
Progress In Electromagnetics Research Letters, Vol. 104, 139-148, 2022
Abstract
In this paper, a novel low-profile direct feed antenna element is proposed to work across the mm-wave frequency band for 5G smartphone applications. The antenna covers the frequency band from 25-32 GHz achieving a wide fractional bandwidth of 24.5%. Contrary to most of the previously reported designs, the proposed antenna has a low-profile single-substrate structure and uses a conventional corporate feed. To improve the overall gain, a 16-element antenna array is formed based on the proposed antenna element. The total realized gain of the array is 15 dBi, and its size is 63×10×0.64 mm3 which fits inside a smartphone chassis. To validate the idea, a prototype is fabricated and measured. A study is also conducted, through simulations, on the beam steering capabilities of the antenna array using digital phase shifters. Having a simple structure and good performance makes the proposed antenna array an excellent candidate for 5G smartphone applications.
Citation
Mohamed Marwan, Omar Khaled, Mohamed Akram, Zeyad Bassem, and Ahmed Alieldin, "A Novel Low-Profile Broadband Direct-Feed mm -Wave Antenna Array for 5G Smartphone Applications," Progress In Electromagnetics Research Letters, Vol. 104, 139-148, 2022.
doi:10.2528/PIERL22022102
References

1. Andrews, J. G., et al. "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098

2. Alieldin, A., Y. Huang, M. Stanley, and Q. Xu, "5G camouflage antenna for pico-cell base stations," IET Microwave. Antennas Propag., Vol. 14, 1696-1699, 2020.
doi:10.1049/iet-map.2019.0663

3. Hong, W., K.-H. Baek, Y. Lee, Y. Kim, and S.-T. Ko, "Study and prototyping of practically large-scale mm-wave antenna systems for 5G cellular devices," IEEE Comm. Mag., Vol. 52, No. 9, 63-69, Sep. 2014.
doi:10.1109/MCOM.2014.6894454

4. Ojaroudiparchin, N., M. Shen, and G. Pedersen, "A 28 GHz FR-4 compatible phased array antenna for 5G mobile phone applications," Proc. ISAP 2015, Hobart, Nov. 2015.

5. Zhou, H. and F. Aryanfar, "Millimetre-wave open-ended siw antenna with wide beam coverage," Proc. AP-S 2013, Orlando, Jul. 2013.

6. Ojaroudiparchin, N., M. Shen, S. Zhang, and G. Pedersen, "A switchable 3D-coverage phased array antenna package for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 2016.

7. Yang, Q. L., Y. L. Ban, K. Kang, C. Y. D. Sim, and G. Wu, "SIW multibeam array for 5G mobile devices," IEEE Access, Vol. 4, 2788-2796, Jun. 2016.
doi:10.1109/ACCESS.2016.2578458

8. Stanley, M., Y. Huang, H. Wang, H. Zhou, A. Alieldin, and S. Joseph, "A capacitive coupled patch antenna array with high gain and wide coverage for 5G smartphone applications," IEEE Access, Vol. 4, 41942-41954, 2018.
doi:10.1109/ACCESS.2018.2860795

9. Huang, H.-C., et al. "5G miniaturized module of wideband dual-polarized mm-wave antennas- in-package integrating non-mm-wave antennas (AiPiA) for cell phones," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 63-65, Dec. 2020.
doi:10.1109/APMC47863.2020.9331609

10. Alkaraki, S., S. F. Jilani, J. Kelly, Y. Gao, S. Stremsdoerfer, and E. D. Gayets, "8×4 mm-wave 3D printed MIMO antenna for 5G wireless communication," 15th European Conference on Antennas and Propagation (EuCAP), Mar. 2021.

11. Huang, Y. and K. Boyle, Antennas: From Theory to Practice, John Wiley & Sons, Chichester, UK, 2008.

12. Balanis, C. A., Antenna Theory: Analysis and Design, Harper & Row, New York, 1982.

13. Stanley, M., Y. Huang, T. Loh, Q. Xu, H. Wang, and H. Zhou, "A high gain steerable millimeter- wave antenna array for 5G smartphone applications," 11th European Conference on Antennas and Propagation (EUCAP2017), 1311-1314, 2017.

14. Stanley, M., Y. Huang, H. Wang, H. Zhou, A. Alieldin, and S. Joseph, "A novel mm-wave phased array antenna with 360 coverage for 5G smartphone applications," 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT 2017), 1-3, 2017.

15. Montoya Moreno, R., J. Ala-Laurinaho, A. Khripkov, J. Ilvonen, and V. Viikari, "Dual-polarized mm-wave end-fire antenna for mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 5924-5934, Aug. 2020.
doi:10.1109/TAP.2020.2989556

16. Stanley, M., Y. Huang, H. Wang, H. Zhou, A. Alieldin, and S. Joseph, "A novel mm-wave phased array for 180 degree coverage for 5G smartphone applications," 12th European Conference on Antennas and Propagation (EUCAP2018), London, Mar. 2018.