Vol. 106
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-10
G -Band Sub-Harmonic Mixer with Broadband Bandwidth and Low Conversion Loss
By
Progress In Electromagnetics Research Letters, Vol. 106, 7-14, 2022
Abstract
In this paper, two G-band sub-harmonic mixers based on planar antiparallel Schottky diodes are presented. The proposed type-I mixer is designed using the conversional THz Schottky diode mixer circuit architecture. In order to broaden the bandwidth further, a novel type-II sub-harmonic mixer based on new circuit topology is proposed. In type-II mixer, an antiparallel Schottky diodes chip is directly connected with metal ground using silver epoxy. The simulated results show that single-sideband (SSB) conversion loss of type-II mixer is less than 10 dB in the frequency range of 160-194.8 GHz. For validation, the type-I mixer is fabricated and tested. Measurement results show that single-sideband conversion loss of type-I mixer is basically less than 10.7 dB in the frequency range of 166-190 GHz.
Citation
Yang Xiong, "G -Band Sub-Harmonic Mixer with Broadband Bandwidth and Low Conversion Loss," Progress In Electromagnetics Research Letters, Vol. 106, 7-14, 2022.
doi:10.2528/PIERL22022105
References

1. Sizov, F. and A. Rogalski, "THz detectors," Progress in Quantum Electronics, Vol. 34, No. 5, 278-374, 2010.
doi:10.1016/j.pquantelec.2010.06.002

2. Guo, C., X. Shang, M. J. Lancaster, J. Xu, J. Powell, H. Wang, K. Parow-Souchon, M. Henry, C. Viegas, B. Alderman, and P. G. Huggard, "A 290-310 GHz single sideband mixer with integrated waveguide filters," IEEE Transactions on Terahertz Science and Technology, Vol. 8, No. 4, 446-454, Jul. 2018.
doi:10.1109/TTHZ.2018.2841771

3. Cui, J., Y. Zhang, X. Liu, Y. Li, and C. Wu, "Design of 199 to 238 GHz broadband subharmonic mixer combining two-stage reduced matching technology with Global Design Method," International Journal of Numerical Modelling Electronic Networks Devices and Fields, e2581, 2019.

4. Liu, G., J. Li, H. Xu, X. Zhang, S. Li, and H. Yu, "Design of a 220 GHz subharmonic mixer based on plannar Schottky diode," IEEE Asia Pacific Microwave Conference, 418-421, Kuala Lumpar, Malaysia, Nov. 2017.

5. Zhang, Y., W. Zhao, Y. Wang, T. Ren, and Y. Chen, "A 220 GHz subharmonic mixer based on Schottky diodes with an accurate terahertz diode model," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2311-2316, Mar. 2016.
doi:10.1002/mop.30032

6. Ji, G., D. Zhang, J. Meng, S. Liu, and C. Yao, "A novel 183 GHz solid-state sub-harmonic mixer," Electronics, Vol. 9, No. 1, 186, 2020, https://doi.org/10.3390/electronics9010186.
doi:10.3390/electronics9010186

7. Maestrini, A., B. Thomas, H. Wang, C. Jung, J. Treuttel, Y. Jin, G. Chattopadhyay, I. Mehdi, and G. Beaudin, "Schottky diode-based terahertz frequency multipliers and mixers," Comptes Rendus Physique, Vol. 11, No. 7-8, 480-495, 2010.
doi:10.1016/j.crhy.2010.05.002

8. Yao, C., Z. Chen, J. Ge, M. Zhou, and X. Wei, "A compact 220 GHz heterodyne receiver module with planar Schottky diodes," AEU --- International Journal of Electronics and Comunications, Vol. 84, 153-161, 2018.
doi:10.1016/j.aeue.2017.11.027

9. Shi, M., M. Yu, G. Li, and M. Wang, "A THz fourth-harmonic conversion system expanding microwave to THz band," Infrared Physics and Technology, Vol. 107, 103217, 2020.
doi:10.1016/j.infrared.2020.103217

10. Yang, Y. L., B. Zhang, D.-F. Ji, Y.-W. Wang, X.-Y. Zhao, and Y. Fan, "A wideband terahertz planar Schottky diode fourth-harmonic mixer with low LO power requirement," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 39, No. 5, 540-546, 2020.

11. Maestrojuan, I., I. Ederra, and R. Gonzalo, "Fourth-harmonic schottky diode mixer development at sub-millimeter frequencies," IEEE Transactions on Terahertz Science and Technology, Vol. 5, No. 3, 518-520, 2015.
doi:10.1109/TTHZ.2015.2407862

12. Shen, S., M. Yu, S. Zhang, X. Zhang, and J. Xu, "An equivalent-circuit model of planar GaAs schottky diode for terahertz application," The 10th International Conference on Communications, Circuits and Systems, 34-37, 2018.

13. Wang, C., Y. He, B. Lu, J. Jiang, L. Miao, X.-J. Deng, Y. Xiong, and J. Zhang, "Robust sub-harmonic mixer at 340 GHz using intrinsic resonances of hammer-head filter and improved diode model," Journal of Infrared, Millimeter, and Terahz Waves, Vol. 38, No. 1, 1397-1415, 2017.
doi:10.1007/s10762-017-0436-4

14. Liu, X., Y. Zhang, H. Wang, L. Qi, B. Wang, J. Zhou, W. Ding, Z. Jin, and F. Xiao, "TSPEM parameter extraction method and its applications in the modeling of planar schottky diode in THz band," Electronics, Vol. 10, 1540, 2021, https://doi.org/10.3390/electronics 10131540.
doi:10.3390/electronics10131540

15. Tang, A. Y., V. Drakinskiy, K. Yhland, J. Stenarson, T. Bryllert, and J. Stake, "Analytical extraction of a schottky diode model from broadband S-Parameters," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 5, 1870-1878, 2013.
doi:10.1109/TMTT.2013.2251655