Vol. 104

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-04-29

Design of Height-Adjustable Mechanically Reconfigurable Reflectarray

By Weixiong Luo, Shixing Yu, Na Kou, Zhao Ding, and Zhengping Zhang
Progress In Electromagnetics Research Letters, Vol. 104, 1-6, 2022
doi:10.2528/PIERL22030801

Abstract

This paper presents a mechanically reconfigurable reflectarray with height adjustment for phase compensation. We designed, fabricated, and measured a prototype of 11×11 elements with microcontrollers to verify the feasibility of the proposed reflectarray. Simulated results show that the phase curve of the unit has good linearity and exhibit broadband characteristics. The maximum phase shift of the unit reaches about 200° at a center frequency of 16 GHz, which meets the requirement of a reflectarray with 1-bit phase quantization. Experimental results show that the gain of the proposed reflectarray is 17.7 dBi, with beam scanning range of ±50°. The proposed configurations can be used for a low-cost beam scanning antenna in wireless communication.

Citation


Weixiong Luo, Shixing Yu, Na Kou, Zhao Ding, and Zhengping Zhang, "Design of Height-Adjustable Mechanically Reconfigurable Reflectarray," Progress In Electromagnetics Research Letters, Vol. 104, 1-6, 2022.
doi:10.2528/PIERL22030801
http://www.jpier.org/PIERL/pier.php?paper=22030801

References


    1. Berry, D., R. Malech, and W. Kennedy, "The reflectarray antenna," IEEE Trans. Antennas Propag., Vol. 11, No. 6, 645-651, 1963.
    doi:10.1109/TAP.1963.1138112

    2. Li, Y. and A. Abbosh, "Reconfigurable reflectarray antenna using single-layer radiator controlled by PIN diodes," IET Microw. Antennas Propag., Vol. 9, 664-671, 2015.
    doi:10.1049/iet-map.2014.0227

    3. Han, J., L. Li, G. Liu, Z. Wu, and Y. Shi, "A wideband 1 bit 12×12 reconfigurable beam-scanning reflectarray: Design, fabrication, and measurement," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 6, 1268-1272, 2019.
    doi:10.1109/LAWP.2019.2914399

    4. Costanzo, S., F. Venneri, A. Raffo, G. Di Massa, and P. Corsonello, "Radial-shaped single varactor-tuned phasing line for active reflectarrays," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3254-3259, 2016.
    doi:10.1109/TAP.2016.2562673

    5. Pozar, D., S. Targonski, and H. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propag., Vol. 44, No. 2, 287-296, 1997.
    doi:10.1109/8.560348

    6. Cui, T., M. Qi, X. Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light-Sci. Appl., Vol. 3, e218, 2014.
    doi:10.1038/lsa.2014.99

    7. Xu, H., S. Xu, F. Yang, and M. Li, "Design and experiment of a dual-band 1 bit reconfigurable reflectarray antenna with independent large-angle beam scanning capability," IEEE Trans. Antennas Propag., Vol. 19, No. 11, 1896-1900, 2020.
    doi:10.1109/LAWP.2020.3011578

    8. Yang, X., S. Xu, F. Yang, M. Li, H. Fang, and L. Liu, "A mechanically reconfigurable reflectarray with slotted patches of tunable height," IEEE Trans. Antennas Propag., Vol. 17, No. 4, 555-558, 2018.
    doi:10.1109/LAWP.2018.2802701

    9. Yang, X., S. Xu, F. Yang, M. Li, and L. Liu, "A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 3959-3966, 2017.
    doi:10.1109/TAP.2017.2708079

    10. Riel, M. and J. Laurin, "Design of an electronically beam scanning reflectarray using aperture-coupled elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1260-1266, 2007.
    doi:10.1109/TAP.2007.895586

    11. Costanzo, S., F. Venneri, A. Raffo, and G. Di Massa, "Dual-layer single-varactor driven reflectarray cell for broad-band beam-steering and frequency tunable applications," IEEE Access, Vol. 6, 71793-71800, 2018.
    doi:10.1109/ACCESS.2018.2882093