Vol. 104
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-06-14
A High Pass Filter Based on Half Mode Substrate Integrated Waveguide Technology for cm Waves
By
Progress In Electromagnetics Research Letters, Vol. 104, 149-154, 2022
Abstract
In this paper we present a high pass filter based on half mode substrate integrated waveguide HMSIW technology dedicated to the transmission of microwave signals range from 6 GHz to 18 GHz. The taper is used for microstripe to SIW transition. We designed SIW line transmission using CST and HFSS simulators on a Rogers RT5880 substrate with dielectric constant of 2.2 and thickness of 0.508 mm, and we used the half mode technique for miniaturizing the filter size and achieving a size reduction about of 50%. The fabricated filter size is 60 x 12 mm2. The lower measured return loss is about -51 dB. We compared the simulation results with measurement ones for validating our proposal. Good agreement between CST, HFSS and measurement results is observed.
Citation
Nabil Cherif, Hichem Chaker, Mehadji Abri, Fellah Benzerga, Hadjira Abri Badaoui, Junwu Tao, Tan-Hoa Vuong, and Sarosh Ahmad, "A High Pass Filter Based on Half Mode Substrate Integrated Waveguide Technology for cm Waves," Progress In Electromagnetics Research Letters, Vol. 104, 149-154, 2022.
doi:10.2528/PIERL22032404
References

1. Noura, A., M. Benaissa, M. Abri, H. Badaoui, T. H. Vuong, and J. Tao, "Miniaturized half- mode SIW band-pass filter design integrating dumbbell DGS cells," Wiley Microwave and Optical Technology Letters, Vol. 61, No. 6, 1473-1477, 2019.
doi:10.1002/mop.31779

2. Rabah, M., M. Abri, H. Badaoui, J. Tao, and T. H. Vuong, "Compact miniaturized half-mode waveguide/high pass-filter design based on SIW technology screens transmit," IEEE C-Band Signals, Microwave and Optical Technology Letters, Vol. 58, No. 2, 414-418, 2016.
doi:10.1002/mop.29576

3. Rabah, M. A., M. Abri, J. Tao, and T. H. Vuong, "Substrate integrated waveguide design using the two dimensional finite element method," Progress In Electromagnetics Research M, Vol. 35, 21-30, 2014.
doi:10.2528/PIERM14010702

4. Cross, L. W., M. J. Almalkawi, and V. K. Devabhaktuni, "Half mode substrate-integrated waveguide-loaded evanescent-mode band pass filter," Wiley Int. J. RF Microwave Comput. Aided Eng., Vol. 23, No. 2, 172-177, 2012.
doi:10.1002/mmce.20662

5. Fellah, B. and M. Abri, "Design of antipodal linearly tapered slot antennas (ALTSA) arrays in SIW technology for UWB imaging," Springer: Recent Adv. Electr. Eng. Control. Appl., Vol. 411, 381-389, 2016.

6. Doucha, S., M. Abri, H. Abri Badaoui, and B. Fellah, "A leaky wave antenna design based on half- mode substrate integrated waveguide technology for X band application," International Journal of Electrical and Computer Engineering (IJECE), Vol. 7, No. 6, 3467-3474, 2017.
doi:10.11591/ijece.v7i6.pp3467-3474

7. Huang, L. and H. Cha, "Compact ridged half-mode substrate integrated waveguide bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 4, 223-225, 2015.
doi:10.1109/LMWC.2015.2400921

8. Fellah, B., M. Abri, and H. Badaoui, "Optimized bends, corporate 1 × 4 and 1 × 8 SIW power dividers junctions analysis for V-band applications using a rigorous finite element method," Arabian Journal for Science and Engineering, Vol. 41, No. 9, 3335-3343, 2016.
doi:10.1007/s13369-015-1823-6

9. Lai, Q., C. Fumeaux, W. Hong, and R. Vahldieck, "Characterization of the propagation properties of the half-mode substrate integrated waveguide," IEEE Trans. Microwave Theory and Technique, Vol. 57, No. 8, 1996-2004, 2009.
doi:10.1109/TMTT.2009.2025429

10. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas and Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

11. Yan, L. and W. Hong, "Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines," Proc. Inst. Elect. Eng. H, Vol. 152, No. 1, 35-42, 2005.