Vol. 104
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-05-31
Spurious Coupling Mitigation in Liquid Crystal Polymer Based Microstrip Filter at q -Band
By
Progress In Electromagnetics Research Letters, Vol. 104, 105-112, 2022
Abstract
RF and mm wave filterssuffers from a common problem of asymmetries in filters transmission response caused by unwanted field couplings between individual resonators. In this paper, unwanted or spurious couplings between non-adjacent resonators are identified in the filter network from the simulation stage and mitigated to the extent possible. A 4-pole Quasi Elliptic Planar Band Pass Filter is fabricated at 48.5 GHz on a Liquid Crystal Polymer (LCP) substrate. An improvement of 6 dB in side lobe imbalance in filter transmission response is obtained. Effect of spurious coupling on band pass filters transmission response is demonstrated through EM simulation. Commensurate measurement results are presented.
Citation
Nishant Shukla, Vikas Gupta, and Praveen Ambati, "Spurious Coupling Mitigation in Liquid Crystal Polymer Based Microstrip Filter at q -Band," Progress In Electromagnetics Research Letters, Vol. 104, 105-112, 2022.
doi:10.2528/PIERL22040403
References

1. Bairavasubramanian, R., S. Pinel, J. Laskar, and J. Papapolymerou, "Compact 60-GHz bandpass filters and duplexers on liquid crystal polymer technology," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, 237-239, May 2006, doi: 10.1109/LMWC.2006.873591.
doi:10.1109/LMWC.2006.873591

2. Thompson, D. C., J. Papapolymerou, and M. M. Tentzeris, "High temperature dielectric stability of liquid crystal polymer at mm-wave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 9, 561-563, Sept. 2005.
doi:10.1109/LMWC.2005.855369

3. Thompson, D. C., O. Tantot, H. Jallageas, G. E. Ponchak, M. M. Tentzeris, and J. Papapolymerou, "Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 4, 1343-1352, Apr. 2004.
doi:10.1109/TMTT.2004.825738

4. Rogers Corporation advanced circuit materials website: http://www.rogerscorporation.com/acm/index.html.

5. Zou, G., H. Gronqvist, P. Starski, and J. Liu, "High frequency characteristics of liquid crystal polymer for system in a package application," IEEE 8th Int. Advanced Packaging Materials Symp., 337-341, Mar. 2002.

6. Bairavasubramanian, R. and J. Papapolymerou, "Multilayer quasi-elliptic filters using dual-mode resonators on liquid crystal polymer technology," IEEE MTT-S International Microwave Symposium Digest, 549-552, Jun. 2007.

7. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, J. Wiley & Sons, New Jersey, 2007.

8. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structure, 3rd Ed., McGraw-Hill Book Company, 1964.

9. Kudsia, C., R. Cameron, and W. C. Tang, "Innovation in microwave filters and multiplexing networks for communication satellite systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, 1133-1149, Jun. 1992.
doi:10.1109/22.141345

10. Gupta, V., T. V. Gajjar, K. K. Pathan, and Y. H. Dave, "Spurious coupling compensation through iris structure in coax cavity filters," 2016 Asia-Pacific Microwave Conference (APMC), 1-3, 2016, DOI: 10.1109/APMC.2016.7931416.

11. Luhaib, S., N. Somjit, and I. C. Hunter, "Improvement of the stopband spurious window for a dual-mode dielectric resonator filter by new coupling technique," International Journal of Electronics, Vol. 105, No. 11, 1805-1815, 2018, DOI: 10.1080/00207217.2018.1482008.
doi:10.1080/00207217.2018.1482008

12. Zhang, W., Z. Yao, J. Zhang, E. S. Kim, and N. Y. Kim, "A compact dual-mode bandpass filter with high out-of-band suppression using a stub-loaded resonator based on the GaAs IPD process," Electronics, Vol. 9, No. 5, 712, 2020, DOI: 10.3390/electronics9050712.
doi:10.3390/electronics9050712

13. Amari, S., M. Bekheit, and F. Seyfert, "Notes on bandpass filters whose inter-resonator coupling coefficients are linear functions of frequency," 2008 IEEE MTT-S International Microwave Symposium Digest, 1207-1210, Atlanta, GA, USA, 2008.

14. Zhang, R. and R. R. Mansour, "Low-cost dielectric-resonator filters with improved spurious performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 10, 2168-2175, Oct. 2007.
doi:10.1109/TMTT.2007.906540

15. Mansour, R. R., "Dual-mode dielectric resonator filters with improved spurious performance," 1993 IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 439-442, Atlanta, GA, USA, 1993.

16. Goussetis, G. and D. Budimir, "Compact ridged waveguide filters with improved stopband performance," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 953-956, Philadelphia, PA, USA, 2003.