Vol. 104
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-06-14
A Low-Profile Dual-Band Dual-Polarized Dipole Antenna for 5G Communication Applications
By
Progress In Electromagnetics Research Letters, Vol. 104, 131-137, 2022
Abstract
A dual-band dual-polarized dipole antenna with an artificial magnetic conductor (AMC) reflector is proposed, which can be applied in 5G base stations. The antenna consists of a pair of ±45° crossed dipoles and a wideband AMC reflector. By adopting arrow-shaped dipoles and introducing slots, dual-band characteristic is achieved. The AMC is designed to operate with 90° reflection-phase bandwidth of 2.1-3.9 GHz (30%). Compared with using traditional reflector, the profile height can be reduced from 0.25λ0 to 0.11λ0 (where λ0 is the free-space wavelength at 2.6 GHz). The measurement results show that the impedance bandwidth with |S11| < -14 dB is about 15.5% (2.44-2.85 GHz) and 18.6% (3.17-3.82 GHz), covering the Sub-6 GHz bands. The average gain is 8.5 dBi in the lower band and 8.2 dBi in the upper band. At 2.6 GHz and 3.45 GHz, the half-power beamwidth of the antenna is 77° and 80°, respectively. In the two bands, the port isolation of the antenna is more than 28 dB, and the cross-polarization level is less than -20 dB.
Citation
Shiqiang Fu, Xuehao Zhao, Chanjuan Li, and Zhongbao Wang, "A Low-Profile Dual-Band Dual-Polarized Dipole Antenna for 5G Communication Applications," Progress In Electromagnetics Research Letters, Vol. 104, 131-137, 2022.
doi:10.2528/PIERL22051005
References

1. Ciydem, M. and S. Koc, "High isolation dual-polarized broadband antenna for base stations," Microw. Opt. Technol. Lett., Vol. 57, 603-607, 2015.
doi:10.1002/mop.28908

2. Ciydem, M. and E. A. Miran, "Dual-polarization wideband sub-6 GHz suspended patch antenna for 5G base station," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 7, 1142-1146, 2020.
doi:10.1109/LAWP.2020.2991967

3. Wen, S., Y. Xu, and Y. Dong, "A low-profile dual-polarized omnidirectional antenna for LTE base station applications," IEEE Transac. Antennas Propag., Vol. 69, No. 9, 5974-5979, 2021.
doi:10.1109/TAP.2021.3061108

4. Lian, R., Z. Wang, Y. Z. Yin, et al. "Design of a low-profile dual-polarized stepped slot antenna array for base station," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 362-365, 2016.
doi:10.1109/LAWP.2015.2446193

5. Liu, Y.-Y. and Z.-H. Tu, "Differential enhanced broadband dual-polarized printed dipole antenna for base stations," Microw. Opt. Technol. Lett., Vol. 58, 2864-2868, 2016.
doi:10.1002/mop.30163

6. Ye, L. H., X. Y. Zhang, Y. Gao, et al. "Wideband dual-polarized four-folded-dipole antenna array with stable radiation pattern for base-station applications," IEEE Transac. Antennas Propag., Vol. 68, No. 6, 4428-4436, 2020.
doi:10.1109/TAP.2020.2969749

7. Martin-Anton, S. and D. Segovia-Vargas, "Fully planar dual-polarized broadband antenna for 3G, 4G and sub 6-GHz 5G base stations," IEEE Access, Vol. 8, 91940-91947, 2020.
doi:10.1109/ACCESS.2020.2994382

8. Cui, G. F., S. G. Zhou, S. X. Gong, et al. "Design of a dual-polarized wideband antenna for 2G/3G/4G mobile communication base station application," Microw. Opt. Technol. Lett., Vol. 58, No. 6, 1329-1332, 2016.
doi:10.1002/mop.29787

9. Zhu, C., B. Wang, W. Luo, et al. "Dual-wideband dual-polarised magnetoelectric dipole antenna for 4G/5G microcell base station," Electron Lett., Vol. 56, No. 6, 269-271, 2020.
doi:10.1049/el.2019.3535

10. Liu, Y., S. Wang, et al. "A compact dual-band dual-polarized antenna with filtering structures for sub-6 GHz base station applications," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 10, 1764-1768, 2018.
doi:10.1109/LAWP.2018.2864604

11. Chu, Q. X., Y. L. Chang, and J. P. Li, "Crisscross-shaped ±45° dual-polarized antenna with enhanced bandwidth for base stations," IEEE Transac. Antennas Propag., Vol. 69, No. 4, 2341-2346, 2021.
doi:10.1109/TAP.2020.3017098

12. Li, Y., Z. Zhao, Z. Tang, et al. "Differentially-fed, wideband dual-polarized filtering antenna with novel feeding structure for 5G sub-6 GHz base station applications," IEEE Access, Vol. 7, 184718-184725, 2019.
doi:10.1109/ACCESS.2019.2960885

13. Li, Z., J. Han, Y. Mu, et al. "Dual-band dual-polarized base station antenna with a notch band for 2/3/4/5G communication systems," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 12, 2462-2466, 2020.
doi:10.1109/LAWP.2020.3035559

14. Li, M., X. Chen, A. Zhang, et al. "Dual-polarized broadband base station antenna backed with dielectric cavity for 5G communications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 10, 2051-2055, 2019.
doi:10.1109/LAWP.2019.2937201

15. Zhai, H., K. Zhang, S. Yang, et al. "A low-profile dual-band dual-polarized antenna with an AMC surface for WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2692-2695, 2017.
doi:10.1109/LAWP.2017.2741465

16. Lin, J., Z. Qian, W. Cao, et al. "A low-profile dual-band dual-mode and dual-polarized antenna based on AMC," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2473-2476, 2017.
doi:10.1109/LAWP.2017.2724540

17. Liu, Q., H. Liu, W. He, et al. "A low-profile dual-band dual-polarized antenna with an AMC re ector for 5G communications," IEEE Access, Vol. 8, 24072-24080, 2020.
doi:10.1109/ACCESS.2020.2970473

18. Li, M., Q. L. Lia, B. Wang, et al. "A low-profile dual-polarized dipole antenna using wideband AMC reflector," IEEE Transac. Antennas Propag., Vol. 66, No. 5, 2610-2615, 2018.
doi:10.1109/TAP.2018.2806424