Vol. 105
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-07-18
Compact Wideband Power Divider Based on Unequal-Width Three-Coupled-Lines
By
Progress In Electromagnetics Research Letters, Vol. 105, 33-39, 2022
Abstract
In the paper, a compact wideband power divider (PD) which consists of a λ/4 unequal width three-coupled-lines, four short-circuited stubs and an airbridge resistor is presented. By connecting the four short-circuited stubs to the input and output ports of the PD, two additional transmission poles are obtained, which results in enhanced bandwidth and improved selectivity. Rigorous design equations are given according to the even-odd mode analysis, and the design parameters are obtained based on particle swarm optimization. For validation, a prototype operating at 1 GHz is fabricated and tested. The experimental results indicate that the proposed power divider exhibits a return loss of more than 17.5 dB and an isolation of larger than 18.8 dB isolation in the fractional bandwidth of 91%.
Citation
Hongmei Liu, Yihan Ma, Siran Zhang, Shao-Jun Fang, and Zhongbao Wang, "Compact Wideband Power Divider Based on Unequal-Width Three-Coupled-Lines," Progress In Electromagnetics Research Letters, Vol. 105, 33-39, 2022.
doi:10.2528/PIERL22052601
References

1. Wilkinson, E. J., "An N-way hybrid power divider," IRE Trans. on Microwave Theory and Techniques, Vol. 8, No. 1, 116-118, Jan. 1960.
doi:10.1109/TMTT.1960.1124668

2. Cohn, S. B., "A class of broadband three-port TEM-mode hybrids," IEEE Trans. on Microwave Theory and Techniques, Vol. 16, No. 2, 110-116, Feb. 1968.
doi:10.1109/TMTT.1968.1126617

3. Bao, C., X. Wang, Z. Ma, C. P. Chen, and G. Lu, "An optimization algorithm in ultrawideband bandpass Wilkinson power divider for controllable equal-ripple level," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 9, 861-864, Sep. 2020.
doi:10.1109/LMWC.2020.3011516

4. Ahmed, U. and A. Abbosh, "Compact power divider for wideband in-phase and out-of-phase performances using parallel coupled lines," Electronics Letters, Vol. 53, No. 19, 1312-1314, 2017.
doi:10.1049/el.2017.2289

5. Maktoomi, M. A., M. S. Hashmi, and F. M. Ghannouchi, "Theory and design of a novel wideband DC isolated Wilkinson power divider," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 8, 586-588, Aug. 2016.
doi:10.1109/LMWC.2016.2585572

6. Yu, T., "A broadband Wilkinson power divider based on the segmented structure," IEEE Trans. on Microwave Theory and Techniques, Vol. 66, No. 4, 1902-1911, Apr. 2018.
doi:10.1109/TMTT.2018.2799579

7. Wong, S. W. and L. Zhu, "Ultra-wideband power divider with good in-band splitting and isolation performances," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 8, 518-520, Aug. 2008.
doi:10.1109/LMWC.2008.2001009

8. Zhang, B. and Y. A. Liu, "Wideband filtering power divider with high selectivity," Electronics Letters, Vol. 51, No. 23, 1950-1952, Nov. 2015.
doi:10.1049/el.2015.2706

9. Liu, Y., L. Zhu, and S. Sun, "Proposal and design of a power divider with wideband power division and port-to-port isolation: A new topology," IEEE Trans. on Microwave Theory and Techniques, Vol. 68, No. 4, 1431-1438, Apr. 2020.
doi:10.1109/TMTT.2019.2955107

10. Chen, M. T. and C. W. Tang, "Design of the filtering power divider with a wide passband and stopband," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 7, 570-572, Jul. 2018.
doi:10.1109/LMWC.2018.2835446

11. Jiao, L., Y. Wu, Y. Liu, Q. Xue, and Z. Ghassemlooy, "Wideband filtering power divider with embedded transversal signal-interference sections," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 12, 1068-1070, Dec. 2017.
doi:10.1109/LMWC.2017.2758761

12. Guo, L., H. Zhu, and A. M. Abbosh, "Wideband tunable in-phase power divider using three-line coupled structure," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 6, 404-406, Jun. 2016.
doi:10.1109/LMWC.2016.2562058

13. Dang, T. S., C. W. Kim, and S. W. Yoon, "Ultra-wideband power divider using three parallel-coupled lines and one shunt stub," Electronics Letters, Vol. 50, No. 2, 95-96, Jan. 2014.
doi:10.1049/el.2013.2290

14. Xu, K. D., Y. Bai, X. Ren, and Q. Xue, "Broadband filtering power dividers using simple three-line coupled structures," IEEE Trans. on Components, Packaging and Manufacturing Technology, Vol. 9, No. 6, 1103-1110, Jun. 2019.
doi:10.1109/TCPMT.2018.2869077

15. Zhu, H., Z. Cheng, and Y. J. Guo, "Design of wideband in-phase and out-of-phase power dividers using microstrip-to-slotline transitions and slotline resonators," IEEE Trans. on Microwave Theory and Techniques, Vol. 67, No. 4, 1412-1424, Apr. 2019.
doi:10.1109/TMTT.2019.2897928

16. Song, K. and Q. Xue, "Novel ultra-wideband (UWB) multilayer slotline power divider with bandpass response," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 1, 13-15, Jan. 2010.
doi:10.1109/LMWC.2009.2035951

17. Kong, M., Y. Wu, Z. Zhuang, W. Wang, and C. Wang, "Ultraminiaturized wideband Quasi- Chebyshev/-Elliptic impedance-transforming power divider based on integrated passive device technology," IEEE Trans. on Plasma Science, Vol. 48, No. 4, 858-866, Apr. 2020.
doi:10.1109/TPS.2020.2980029

18. Liu, H., Y. Ma, M. Guan, S. Fang, and Z. Wang, "Synthesis of miniaturized wideband four-way filtering power divider consisting of unequal-width three-coupled-lines," Int. J. RF Microw. Comput. Aided Eng., Vol. 31, No. 10, e22805, Oct. 2021.

19. Muraguchi, M., T. Yukitake, and Y. Naito, "Optimum design of 3-dB branch-line couplers using microstrip lines," IEEE Trans. on Microwave Theory and Techniques, Vol. 31, No. 8, 674-678, Aug. 1983.
doi:10.1109/TMTT.1983.1131568