Vol. 2
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-06-04
FDTD Modeling of a Resistively Loaded Monopole for Narrow Borehole Ground Penetrating Radar
By
Progress In Electromagnetics Research M, Vol. 2, 201-211, 2008
Abstract
The geometryof a broadband (0.7-2 GHz) monopole antenna intended to be inserted in a narrow borehole for ground penetrating crosshole application is proposed. The monopole antenna is supposed to be designed on a printed circuit board (PCB) using the low-cost microstrip technology. Based on the FDTD approach, the modeling of the antenna surrounded byits environment has been made, and the influence of several parameters on the radiated waveforms has been studied in details. The modeling of a transmission link has also been considered. Such a studyaims at the realization of a narrow broadband antenna.
Citation
Florence Sagnard C. Fauchard , "FDTD Modeling of a Resistively Loaded Monopole for Narrow Borehole Ground Penetrating Radar," Progress In Electromagnetics Research M, Vol. 2, 201-211, 2008.
doi:10.2528/PIERM08041102
http://www.jpier.org/PIERM/pier.php?paper=08041102
References

1. Daniels, D. J., Ground Penetrating Radar, IEE Series 15, 2004.

2. Ozdemir, C., S. Demirci, and E. Yigit, "Practical algorithms to focus B-scan GPR images: Theoryand application to real data," Progress In Electromagnetics Research B, Vol. 6, 109-122, 2008.
doi:10.2528/PIERB08031207

3. Giroux, B., E. Gloaguen, and M. Chouteau, "bh tomo — A Matlab borehole georadar 2D tomographypac kage," Computers and Geosciences, Vol. 33, 126-137, 2007.
doi:10.1016/j.cageo.2006.05.014

4. Rucker, D. F. and T. P. A. Ferre, "Near-surface water content estimation with borehole ground penetrating radar using critically refracted waves," Vadose Zone Journal, Vol. 2, 247-252, 2003.
doi:10.2113/2.2.247

5. Rucker, D. F. and T. P. A. Ferre, "Automated water content reconstruction of zero-offset borehole ground penetrating radar data using simulated annealing," J. of Hydrology, Vol. 309, 1-16, 2005.
doi:10.1016/j.jhydrol.2004.11.008

6. Rucker, D. F. and T. P. A. Ferre, "BGPR Reconstruct: A MATLAB ray-tracing program for nonlinear inversion of first arrival travel time data from zero-offset borehole radar," Computers and Geosciences, Vol. 30, 767-776, 2004.
doi:10.1016/j.cageo.2004.05.009

7. AFNOR NF P 94-062, "Soils: Investigation and testing-Measurement of densityon site-Gamma-gamma ray log,", 1997.

8. Ren, W., J. Y. Deng, and K. S. Chen, "Compact PCB monopole antenna for UWB applications," J. of Electromagn. Waves and Appl., Vol. 21, No. 10, 1411-1420, 2007.
doi:10.1163/156939307783239401

9. Yin, X.-C., C.-L. Ruan, C.-Y. Ding, and J.-H. Chu, "A planar U type monopole antenna for UWB applications," Progress In Electromagnetics Research Letters, Vol. 2, 1-10, 2008.
doi:10.2528/PIERL07121405

10. Naghshvarian-Jahromi, M., "Compact UWB bandnotch antenna with transmission-line-FED," Progress In Electromagnetics Research, Vol. 3, 283-293, 2008.

11. Kuo, L.-C., H.-R. Chuang, Y.-C. Kan, T.-C. Huang, and C.-H. Ko, "A studyof planar printed dipole antennas for wireless communication applications," J. of Electromagn. Waves and Appl., Vol. 21, No. 5, 637-652, 2007.
doi:10.1163/156939307780667355

12. Green, H. E., "The radiation pattern of a conical horn," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1149-1160, 2006.
doi:10.1163/156939306777442999

13. Ghosh, S., A. Roy, and A. Chakrabarty, "Estimation of antenna factor of microstrip patch antenna as EMI sensor," Progress In Electromagnetics Research Letters, Vol. 3, 113-122, 2008.
doi:10.2528/PIERL08021403

14. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD," J. of Electromagn. Waves and Appl., Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224

15. Sato, M. and R. Thierbach, "Analysis of a borehole radar in cross-hole mode," IEEE Trans. Geosc. Remote Sens., Vol. 29, No. 6, 899-904, Nov. 1991.
doi:10.1109/36.101368

16. Irving, J. D. and R. J. Knight, "Numerical simulation of antenna transmission and reception for crosshole ground-penetrating radar," Geophysics, Vol. 71, No. 2, K37-K45, March-April 2006.
doi:10.1190/1.2187768

17. Wu, T. T. and R. W. P. King, "The cylindrical antenna with nonreflecting resistive loading," IEEE Trans. Antennas Propagat., Vol. 13, 369-373, 1965.
doi:10.1109/TAP.1965.1138429

18. Gouws, M., "Modelling of a monostatic borehole radar antenna,", Ph.D. Thesis, Universityof Stellenbosch, April 2006.

19. Kim, K. and W. R. Scott Jr., "Design and realization of a discretelyloaded resistive vee dipole for ground-penetrating radars ," Radio Science, Vol. 39, 1-9, 2004.

20. Kim, K. and W. R. Scott Jr., "Design of a resistivelyloaded vee dipole for ultrawide-band ground-penetrating radar applications," IEEE Trans. Antennas and Propagat., Vol. 53, No. 8, 2525-2532, Aug. 2005.
doi:10.1109/TAP.2005.852320

21. Gupta, K. C., Microstrip Lines and Slotlines, 2 Ed., Artech House, 1996.