Vol. 3
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-06-04
Localization of Magnetic Sources Underground by a Probability Tomography Approach
By
Progress In Electromagnetics Research M, Vol. 3, 27-56, 2008
Abstract
A tomography method is proposed to image magnetic anomaly sources buried below a non-flat ground surface, using the expression of the total power associated with a measured magnetic field. It is shown that the total power can be written as a sum of crosscorrelation products between the magnetic field data set and the theoretical expression of the magnetic field generated by a source element of unitary strength. Then, applying Schwarz's inequality, an occurrence probability function is derived for imaging any distribution of magnetic anomaly sources in the subsurface. The tomographic procedure consists in scanning the half-space below the survey area by the unitary source and in computing the occurrence probability function at the nodes of a regular grid within the half-space. The grid values are finally contoured in order to single out the zones with high probability of occurrence of buried magnetic anomaly sources. Synthetic and field examples are discussed to test the resolution power of the proposed tomography.
Citation
Paolo Mauriello Domenico Patella , "Localization of Magnetic Sources Underground by a Probability Tomography Approach," Progress In Electromagnetics Research M, Vol. 3, 27-56, 2008.
doi:10.2528/PIERM08050504
http://www.jpier.org/PIERM/pier.php?paper=08050504
References

1. Blakely, R. J., Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, 1996.

2. Cammarano, F., P. Mauriello, D. Patella, S. Piro, F. Rosso, and L. Versino, "Integration of high resolution geophysical methods. Detection of shallow depth bodies of archaeological interest," Annali di Geofisica, Vol. 41, 359-368, 1998.

3. Capineri, L., D. Daniels, P. Falorni, O. Lopera, and C. Windsor, "Ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803

4. Cassano, E. and P. La Torre, "Geophysics," Somma Vesuvius, R. Santacroce (ed.), Rome, Quaderni della Ricerca Scientifica,Vol. 114/8, 175--196, Consiglio Nazionale delle Ricerche, 1987.

5. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi, "Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting," Journal of Volcanology and Geothermal Research, Vol. 82, 219-238, 1998.
doi:10.1016/S0377-0273(97)00066-8

6. Gnedenko, B. V., Kurs Teorii Verojatnostej, Mir, Moscow, Published in Italian as Teoria della Probabilita, Editori Riuniti, Rome, 1979.

7. Iuliano, T., P. Mauriello, and D. Patella, "Looking inside mount vesuvius by potential fields integrated probability tomographies," Journal of Volcanology and Geothermal Research, Vol. 113, 363-378, 2002.
doi:10.1016/S0377-0273(01)00271-2

8. Jackson, J. D., Classical Electrodynamics, John Wiley and Sons, New York, 1975.

9. Mauriello, P. and D. Patella, "Resistivity anomaly imaging by probability tomography," Geophysical Prospecting, Vol. 47, 411-429, 1999.
doi:10.1046/j.1365-2478.1999.00137.x

10. Mauriello, P. and D. Patella, "Principles of probability tomography for natural-source electromagnetic induction fields," Geophysics, Vol. 64, 1403-1417, 1999.
doi:10.1190/1.1444645

11. Mauriello, P. and D. Patella, "Gravity probability tomography: A new tool for buried mass distribution imaging," Geophysical Prospecting, Vol. 49, 1-12, 2001.
doi:10.1046/j.1365-2478.2001.00234.x

12. Mauriello, P. and D. Patella, "Localization of maximum-depth gravity anomaly sources by a distribution of equivalent point masses," Geophysics, Vol. 66, 1431-1437, 2001.
doi:10.1190/1.1487088

13. Mauriello, P. and D. Patella, "Localization of magnetic sources underground by a data adaptive tomographic scanner,", arXiv.physics/0511192v2, 2005.
doi:10.1190/1.1487088

14. Mauriello, P., D. Monna, and D. Patella, "3D geoelectric tomography and archaeological applications," Geophysical Prospecting, Vol. 46, 543-570, 1998.

15. Nishimoto, M., S. Ueno, and Y. Kimura, "Feature extraction from GPR data for identification of landmine-like objects under rough ground surface," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1577-1586, 2006.
doi:10.1163/156939306779292318

16. Parasnis, D. S., Principles of Applied Geophysics, Chapman & Hall, London, 1997.

17. Patella, D., "Introduction to ground surface self-potential tomography," Geophysical Prospecting, Vol. 45, 653-681, 1997.
doi:10.1046/j.1365-2478.1997.430277.x

18. Patella, D., "Self-potential global tomography including topographic effects," Geophysical Prospecting, Vol. 45, 843-863, 1997.
doi:10.1046/j.1365-2478.1997.570296.x

19. Santoro, P., Atti Accademia Nazionale dei Lincei, Vol. 31, 211-298, Relazione di scavo sulle campagne 1971--1974 nella necropoli, Colle del Forno, loc. Montelibretti, Roma, 1977.

20. Smirnov, V. I., Kurs Vyssej Matematiki 2, Mir, Moscow, Published in Italian as Corso di Matematica Superiore 2, Editori Riuniti, Rome, 1977.

21. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

22. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: a comparison with bow-tie using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224

23. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002

24. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 283-290, 2006.
doi:10.1163/156939306775701704