Vol. 3
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-06-26
RF Circuit Design Integrated with Microstrip DGS
By
Progress In Electromagnetics Research M, Vol. 3, 141-152, 2008
Abstract
This paper presents microstrip transmission lines for designing a microstrip open loop resonator bandpass filter and a novel dual band transmitter. Microstrip open loop resonator bandpass filter with the dumbbell DGS under feed lines enhances the harmonic suppressed at the center frequency of 2.44 GHz. An asymmetric dumbbell DGS-integrated microstrip line is applied to the dual band transmitter which performs as a frequency doubler at 6.8 GHz or a power amplifier at 2.4 GHz. For the proposed bandpass filter,it has a wide stopband characteristic with attenuation -25 dB up to 8 GHz and has an -1.25 dB insertion loss by using two dumbbell DGS. Measurements of the dual band transmitter show that in frequency double mode,fundamen tal suppression and maximum output are -41 dBc and 7.8 dBm. And in amplifier mode,second harmonic suppression,P1 dB and gain achieve -52.6 dBc,13.7 dBm and 16.5 dB, respectively.
Citation
Xiao-Qun Chen Li Hong Weng Yu-Chun Guo Xiao-Wei Shi , "RF Circuit Design Integrated with Microstrip DGS," Progress In Electromagnetics Research M, Vol. 3, 141-152, 2008.
doi:10.2528/PIERM08052204
http://www.jpier.org/PIERM/pier.php?paper=08052204
References

1. Jeon, J. H., J. H. Choi, S. M. Kang, T. Y. Kim, W. Choi, and K. H. Koo, "A novel dual band transmitter for WLAN 802.11 a/g applications," IEEE MTT S Int. Microwave Symp. Dig., Vol. 2, 1285-1288, 2004.

2. Zhang, P., L. Der, D. Guo, I. Sever, T. Bourdi, C. Lam, A. Zolfaghari, J. Chen, D. Gambetta, B. Cheng, S. Gowder, S. Hart, L. Huynh, T. Nguyen, and B. Razavi, "A single-chip dualband direct-conversion IEEE 802.11 a/b/g WLAN transceiver in 0.18-μm CMOS," IEEE J Solid State Circuits, Vol. 40, No. 8, 1932-1937, 2005.
doi:10.1109/JSSC.2005.848182

3. Chang, C.-F. and S.-J. Chung, "Bandpass filter of serial configuration with two finite transmission zeros using LTCC technology," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 7, 2383-2388, 2005.
doi:10.1109/TMTT.2005.850414

4. Chung, Y., S.-S. Jeon, S. Kim, D. Ahn, J.-I. Choi, and T. Itoh, "Multifunctional microstrip transmission lines integrated with defected ground structure for RF front-end application," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 5, 1425-1432, 2004.
doi:10.1109/TMTT.2004.827013

5. Xiao, J.-K., S.-W. Ma,S. Zhang,and Y. Li, "Novel compact split ring stepped-impedance resonators (SIR) bandpass filters with transmission zero," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 329-339, 2007.
doi:10.1163/156939307779367369

6. Zhang, J. and X.-W. Sun, "Harmonic suppression of branch-line and rat-race coupler using complementary spilt ring resonators (CSRR) cell," Progress In Electromagnetics Research Letters, Vol. 2, 73-79, 2008.
doi:10.2528/PIERL07122702

7. Fan, J.-W., C.-H. Liang, and Y.-J. Wu, "Compact dual-band and tri-band filters with loaded open-loop resonators," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2371-2378, 2007.
doi:10.1163/156939307783134326

8. Parui, S. K. and S. Das, Performance enhancement of microstrip open loop resonator band pass filter by defected ground structures, Conf. Proc. IEEE Int. Workshop Antenna Technol. Small Smart Antennas Metamater. Applic., 483-486, 2007.

9. Zhang, F. J. W. and J. S. Zhang, "Wideband cavity-backed patch antenna for pcs/imt2000/2.4 GHz WLAN," Progress In Electromagnatics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER07030201

10. Zaker, R., C. Ghobadi, and J. Nourinia, "A modified microstripfed two-step tapered monopole antenna for UWB and WLAN applications," Progress In Electromagnatics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIER07080701

11. Chen, X. Q., et al., "A novel dual band transmitter using microstrip defected ground structure," Progress In Electromagnatics Research, Vol. 83, 1-11, 2008.
doi:10.2528/PIER08041503

12. Hong, J.-S. and M. J. Lancaster, "Theory and experiment of novel microstrip slow-wave open-loop resonator filters," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 12, Part 2, 2358--2365, 1997.

13. Park, Y., Melville, R. C. Frye, M. Chen, and J. S. Kenney, "Dual-band transmitters using digitally predistorted frequency multipliers for software defined radios," IEEE MTT S Int. Microwave Symp. Dig., Vol. 2, 547-550, 2004.

14. Xiao, J.-K., "Novel microstrip dual-mode bandpass filter using isoscelles triangular patch resonator with fractal-shaped structure," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1341-1351, 2007.
doi:10.1163/156939307783239500

15. El-Tokhy, M. A. and H. K. Mansour, "A 2.3-MW 16.7-MHz analog matched filter circuit for DS-CDMA wireless applications," Progress In Electromagnetics Research B, Vol. 5, 253-264, 2008.
doi:10.2528/PIERB08022406

16. Choi, H.-J., J.-S. Lim, and Y.-C. Jeong, "A new design of Doherty amplifiers using defected ground structure," IEEE Microwave Compon. Lett., Vol. 16, 687-689, 2006.
doi:10.1109/LMWC.2006.885636

17. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnatics Research B, Vol. 4, 27-39, 2008.
doi:10.2528/PIERB08010203

18. Naghshvarian-Jahromi, M. and M. Tayarani, "Miniature planar uwb bandpass filters with circular slots in ground," Progress In Electromagnatics Research Letters, Vol. 3, 87-93, 2008.
doi:10.2528/PIERL08020902

19. Oskouei, H. D., K. Forooraghi, and M. Hakkak, "Guided and leaky wave characteristics of periodic defected ground structures," Progress In Electromagnatics Research, Vol. 73, 15-27, 2007.
doi:10.2528/PIER07031701

20. Park, Y., Melville, R. C. Frye, M. Chen, and J. S. Kenney, "Dual-band transmitters using digitally predistorted frequency multipliers for reconfigurable radios," IEEE Trans. Microwave Theory Tech., Vol. 53, 115-122, 2005.
doi:10.1109/TMTT.2004.839897

21. Choi, H.-J., J.-S. Lim, and Y.-C. Jeong, "A new design of Doherty amplifiers using defected ground structure," IEEE Microwave Compon. Lett., Vol. 16, No. 12, 687-689, 2006.
doi:10.1109/LMWC.2006.885636