Vol. 3
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-07-01
Velocity Shear Ion-Cyclotron Instability with Perpendicular ac Electric Field
By
Progress In Electromagnetics Research M, Vol. 3, 177-191, 2008
Abstract
Current driven electrostatic ion cyclotron instability has been studied for parallel flowv elocity shear with perpendicular a.c. electric field to the ambient magnetic field for bi-Maxwellian density drift distribution function. The method adopted for expression for dispersion relation and growth rate is kinetic approach and method of characteristic solution for ionospheric plasma. The effect of a.c. frequency, density gradient, and velocity shear scale length has been discussed.
Citation
Rama Pandey Umesh Chandra Srivastava R. Pandey B. Prasad Anonymous Hariom , "Velocity Shear Ion-Cyclotron Instability with Perpendicular ac Electric Field," Progress In Electromagnetics Research M, Vol. 3, 177-191, 2008.
doi:10.2528/PIERM08053001
http://www.jpier.org/PIERM/pier.php?paper=08053001
References

1. Drummond, W. E. and M. N. Rosenbluth, "Anomalas diffusion a rising from microinstablities in a plasma," Phys. Fluids, Vol. 5, 1507, 1962.
doi:10.1063/1.1706559

2. Ganguli, G. and P. Bakshi, "Phys. Fluids,", Vol. 25, 1830.
doi:10.1063/1.863661

3. Ganguli, G., P. Bakshi, and P. Palmadesso, "Phys. Fluids,", Vol. 26, Phys. Fl, 1983.

4. Ganguli, G., P. Bakshi, and P. Palmadesso, "Phys. Fluids,", Vol. 26, 1808, 1983.
doi:10.1063/1.864356

5. Ganguli, G. and P. Bakshi. P. Palmadeso, "Phys. Fluids,", Vol. 27, 2039, 1984.
doi:10.1063/1.864860

6. Chandrashekar, S. C., "Hydrodynamic and Hydro-magnetic Stability," Ch. XI, Drover, NewY ork, 1981.

7. Mikhailovskii, A. B., "Theory of Plasma Instabilities," Ch. 7, Constants Bereau, NewYork, 1974, Vol. 1.

8. Maslowe, S. A., "Hydrodynamic Instabilities and Transition to Turbulance," Ch. 7, Spinger Verlag, Berlin, 1985.

9. Waelbroeck, E. L. and F. L. Chen, "Phys. Fluids,", Vol. B3, 601, 1991.

10. Bhattacharjee, R., R. Iacono, J. L. Milovich, and C. Paranicas, "Phys. Fluids,", Vol. B1, 2207.

11. Biglari, H., P. H. Diamond, and P. W. Terry, Phys. Fluids, Vol. B2, 1, 1990.

13. Groebner, R. J., K. H. Burrell, and R. P. Seray Darian, "Phys. Rev. Lett.,", Vol. 64, 3015.

14. Pandey, R. S., K. D. Misra, and A. K. Tripathi, "Generation of ion-cyclotron like wave by parallel flow velocity shear in the presence of inhomogeneous D.C. electric field in an anisotropic magnetoplasma," Indian J. Radio Space Phys., Vol. 32, 75, 2003.

15. Mozer, F. S., C. W. Carlson, M. K. Hudson, R. B. Torbert, B. Parady, J. Yattean, and M. C. Kelly, "Phys. Rev. Lett.,", Vol. 38, 292, 1977.

16. Temerin, M., C. Cattell, R. Laysak, M. Hudson, R. B. Torbert, F. S. Mozer, R. D. Sharp, and P. M. Kintner, "J. Geophys. Res.,", Vol. 86, 11278, 1981.

17. Ganguli, G., Y. C. Lee, and J. Palmadesso, "Kinetic theory for electrostatic waves due to transverse velocity shear," Phys. Fluids, Vol. 31, 823, 1988.
doi:10.1063/1.866818

18. Ganguli, G., Y. C. Lee, and P. J. Palmadesso, "Electrostatic ion-cyclotron instability caused by a non-unifrom electric field perpendicular to external magnetic field ," Phys. Fluids, Vol. 28, 761, 1985.
doi:10.1063/1.865096

19. Pandey, R. S., K. D. Misra, and A. K. Tripathi, "Kelvin-Helmholtz instability in an anisotropic magnetoplasma in the presence of inhomogeneous D.C. electric field parallel flowv elocity shear," Indian J. Radio Space Phys., Vol. 30, No. 113, 2001.

20. Pandey, R. S., R. P. Pandey, A. K. Srivastava, S. M. Karim, and Hariom, "The electromagnetic ion-cyclotron instability in the presence of a.c. electric field for Lorentzian kappa," Progress In Progress In M, Vol. 1, 207, 2008.

21. Huba, J. D., "The Kelvin-Helmholtz instability in inhomogeneous plasma ," J. Geophys. Res., Vol. 86, 3653, 1981.
doi:10.1029/JA086iA05p03653