Vol. 4
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-08-08
Variational Approach Method for Nonlinear Oscillations of the Motion of a Rigid Rod Rocking Back and Cubic
By
Progress In Electromagnetics Research M, Vol. 4, 23-32, 2008
Abstract
This paper deals with Approximate Analytical Solutions to nonlinear oscillations of a conservative, non-natural, single-degreeof- freedom system with odd nonlinearity. By extending the Variational approach proposed by He, we established approximate analytical formulas for the period and periodic solution.To illustrate the applicability and accuracy of the method, two examples are presented: (i) the motion of a rigid rod rocking back and forth on the circular surface without slipping, and (ii) Cubic-Quintic Duffing Oscillators. Comparison of the result which is obtained by this method with the obtained result by the Exact solution reveals that the He's Variational approach is very effective and convenient and can be easily extended to other nonlinear systems and can therefore be found widely applicable in engineering and other sciences.
Citation
Seyedreza Ganji Davoodi Ganji Hamed Babazadeh Salim Karimpour , "Variational Approach Method for Nonlinear Oscillations of the Motion of a Rigid Rod Rocking Back and Cubic," Progress In Electromagnetics Research M, Vol. 4, 23-32, 2008.
doi:10.2528/PIERM08061007
http://www.jpier.org/PIERM/pier.php?paper=08061007
References

1. He, J. H., Non-perturbative methods for strongly nonlinear problems, Dissertation, De-Verlag im Internet GmbH, Berlin,2006.

2. Nayfeh, A. H., Problems in Perturbations, Wiley, New York, 1985.

3. He, J. H., "Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part III: Double series expansion," International Journal Non-linear Science and Numerical Simulation, Vol. 2, 317, 2001.

4. He, J. H., "Anew perturbation technique which is also valid for large parameters ," J. Sound Vib., Vol. 229, 1257, 2000.
doi:10.1006/jsvi.1999.2509

5. He, J. H., "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons and Fractals, Vol. 26, 695, 2005.
doi:10.1016/j.chaos.2005.03.006

6. He, J. H., "Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations, Part I: Expansion of a constant ," Int. J. Nonlinear Mech., Vol. 37, 309, 2002.
doi:10.1016/S0020-7462(00)00116-5

7. He, J. H., "Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part II: Anew transformation," Int. J. Nonlinear Mech., Vol. 37, 315, 2002.
doi:10.1016/S0020-7462(00)00117-7

8. He, J. H., "Homotopy perturbation method for solving boundary value problems ," Phys Lett A, Vol. 350, No. 87, 2006.

9. He, J. H., "Some asymptotic methods for strongly nonlinear equations," Int. J. Mod. Phys. B, Vol. 20, 1141-1199, 2006.
doi:10.1142/S0217979206033796

10. He, J. H., "New interpretation of homotopy perturbation method," Int. J. Mod. Phys. B, Vol. 20, 2561, 2006.
doi:10.1142/S0217979206034819

11. He, J. H., "The homotopy perturbation method for nonlinear oscillators with discontinuities ," Appl. Math. Comput., Vol. 151, 287, 2004.
doi:10.1016/S0096-3003(03)00341-2

12. Ganji, D. D. and A. Sadighi, "Application of He's homotopyperturbation method to nonlinear coupled systems of reaction-diffusion equations," Int. J. Nonlinear Sci. Numer. Simul., Vol. 7, No. 4, 411, 2006.

13. Rafei, M. and D. D. Ganji, "Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturubation method," Int. J. Nonlinear Sci. Numer. Simul., Vol. 7, No. 3, 321, 2006.

14. Ganji, D. D., "The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer," Phys. Lett., Vol. 355, 337, 2006.

15. Alizadeh, S. R. S., G. Domairry, and S. Karimpour, "An approximation of the analytical solution of the linear and nonlinear integro-differential equations by homotopy perturbation method," Acta Applicandae Mathematicae.

16. Gottlieb, H. P. W., "Harmonic balance approach to limit cycles for nonlinear jerk equations," J. Sound Vib., Vol. 297, 243, 2006.
doi:10.1016/j.jsv.2006.03.047

17. Lim, C. W., B. S.Wu, and W. P. Sun, "Higher accuracy analytical approximations to the Duffing-harmonic oscillator," J. Sound Vib., Vol. 296, 1039, 2006.
doi:10.1016/j.jsv.2006.02.020

18. Belendez, A., A. Marquez, T. Belendez, A. Hernandez, and M. L. Alvarez, "Harmonic balance approaches to the nonlinear oscillators in which the restoring force is inversely proportional to the dependen," Journal of Sound and Vibration, Vol. 314, 775, 2008.
doi:10.1016/j.jsv.2008.01.021

19. Belendez, A., A. Hernandez, T. Belendez, M. L. Alvarez, S. Gallego, M. Ortuno, and C. Neipp, "Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire," J. Sound Vib., Vol. 302, 1018, 2007.
doi:10.1016/j.jsv.2006.12.011

20. Hu, H. and J. H. Tang, "Solution of a Duffing-harmonic oscillator by the method of harmonic balance," J. Sound Vib., Vol. 294, 637, 2006.
doi:10.1016/j.jsv.2005.12.025

21. Hu, H., "Solution of a quadratic nonlinear oscillator by the method of harmonic balance ," J. Sound Vib., Vol. 293, 462, 2006.
doi:10.1016/j.jsv.2005.10.002

22. Itovich, G. R. and J. L. Moiola, "On period doubling bifurcations of cycles and the harmonic balance method," Chaos Solitons Fractals, Vol. 27, 647, 2005.
doi:10.1016/j.chaos.2005.04.061

23. Penga, Z. K., Z. Q. Langa, S. A. Billingsa, and G. R. Tomlinson, "Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis," J. Sound Vib., Vol. 311, 56, 2008.
doi:10.1016/j.jsv.2007.08.035

24. He, J. H., "Determination of limit cycles for strongly nonlinear oscillators ," Phys Rev Lett., Vol. 90, 174, 2006.

25. He, J. H., "Preliminary report on the energy balance for nonlinear oscillations ," Mechanics Research Communications, Vol. 29, 107-2002.
doi:10.1016/S0093-6413(02)00237-9

26. He, J. H., "Determination of limit cycles for strongly nonnonlinear," Phys. Rev. Lett., Vol. 90, No. 17, 2003.
doi:10.1103/PhysRevLett.90.174301

27. Ozis, T. and A. Yildirim, "Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method," Comput Math Appl., Vol. 54, 1184, 2007.
doi:10.1016/j.camwa.2006.12.064

28. D'Acunto, M., "Determination of limit cycles for a modified van der pol oscillator," Mechanics Research Communications, Vol. 33, 93, 2006.
doi:10.1016/j.mechrescom.2005.06.012

29. He, J. H., "Variational iteration method --- Akind of nonlinear analytical technique: Some examples," Int. J. Nonlinear Mech., Vol. 34, 699, 1999.
doi:10.1016/S0020-7462(98)00048-1

30. He, J. H. and X. H. Wu, "Construction of solitary solution and compaction-like solution by variational iteration method," Chaos, Solitons & Fractals,, Vol. 29, 108, 2006.
doi:10.1016/j.chaos.2005.10.100

31. Rafei, M., D. D. Ganji, H. Daniali, and H. Pashaei, "The variational iteration method for nonlinear oscillators with discontinuities," J. Sound Vib., Vol. 305, 614, 2007.
doi:10.1016/j.jsv.2007.04.020

32. Zhang, L. N. and J. H. He, "Resonance in Sirospun yarn spinning using a variational iteration method," Computers and Mathematics with Applications, Vol. 54, 1064, 2007.
doi:10.1016/j.camwa.2006.12.050

33. Varedi, S. M., M. J. Hosseini, M. Rahimi, and D. D. Ganji, "He's variational iteration method for solving a semi-linear inverse parabolic equation," Physics Letters A, Vol. 370, 275, 2007.
doi:10.1016/j.physleta.2007.05.100

34. Hashemi, K. S. H. A., N. Tolou, A. Barari, and A. J. Choobbasti, On the approximate explicit solution of linear and non-linear non-homogeneous dissipative wave equations, Istanbul Conferences, Torque, accepted, 2008.

35. He, J. H., "Variational approach for nonlinear oscillators," Chaos, Solitons and Fractals, Vol. 34, 1430, 2007.
doi:10.1016/j.chaos.2006.10.026

36. Wu, Y., "Variational approach to higherorder waterwave equations," Chaos, Solitons and Fractals, Vol. 32, 195, 2007.
doi:10.1016/j.chaos.2006.05.019

37. Xu, L., "Variational approach to solitons of nonlinear dispersive equations ," Chaos, Solitons & Fractals, Vol. 37, 137, 2008.
doi:10.1016/j.chaos.2006.08.016

38. He, J. H., "Variational principles for some nonlinear partial differential equations with variable coefficient," Chaos, Solitons & Fractals, Vol. 19, No. 4, 847, 2004.
doi:10.1016/S0960-0779(03)00265-0

39. Nayfeh, A. H. and D. T. Mook, Nonlinear Oscillations, Wiley, New York, 1979.

40. Wu, B. S., C. W. Lim, and L. H. He, "A new method for approximate analytical solutions to nonlinear oscillations of nonnatural systems," Nonlinear Dynamics, Vol. 32, 1, 2003.
doi:10.1023/A:1024223118496

41. Hamdan, M. N. and N. H. Shabaneh, "On the large amplitude free vibration of a restrained uniform beam carrying an intermediate a restrained uniform beam carrying an intermediate," J. Sound Vib., Vol. 199, 711, 1997.
doi:10.1006/jsvi.1996.0672

42. Lai, S. K., C. W. Lim, B. S. Wu, C. Wang, Q. C. Zeng, and X. F. He, "Newtonharmonic balancing approach for accurate solutions to nonlinear cubicquintic Duffing oscillators," Applied Mathematical Modelling, 2008.