Vol. 4
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-09-18
Speech Enhancement Using an Adaptive Wiener Filtering Approach
By
Progress In Electromagnetics Research M, Vol. 4, 167-184, 2008
Abstract
This paper proposes the application of the Wiener filter in an adaptive manner in speech enhancement. The proposed adaptive Wiener filter depends on the adaptation of the filter transfer function from sample to sample based on the speech signal statistics (mean and variance). The adaptive Wiener filter is implemented in time domain rather than in frequency domain to accommodate for the varying nature of the speech signal. The proposed method is compared to the traditional Wiener filter and the spectral subtraction methods and the results reveal its superiority.
Citation
M. Abd El-Fattah Moawad Ibrahim Dessouky Salah Diab Fathi Abd El-Samie , "Speech Enhancement Using an Adaptive Wiener Filtering Approach," Progress In Electromagnetics Research M, Vol. 4, 167-184, 2008.
doi:10.2528/PIERM08061206
http://www.jpier.org/PIERM/pier.php?paper=08061206
References

1. Boll, S. F., "Suppression of acoustic noise in speech using spectral subtraction ," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 27, 113-120, 1979.
doi:10.1109/TASSP.1979.1163209

2. Berouti, M., R. Schwartz, and J. Makhoul, "Enhancement of speech corrupted by acoustic noise," Proc. IEEE Int. Conf. Acoust., Speech Signal Processing, 208-211, 1979.

3. Ephriam, Y. and H. L. van Trees, A signal subspace approach for speech enhancement, Proc. International Conference on Acoustic, Speech and Signal Processing, Vol. 2, 355-358, Detroit, MI, USA., May 1993.

4. Haykin, S., Adaptive Filter Theory, Prentice-Hall, ISBN 0-13-322760-X, 1996.

5. Lim, J. S. and A. V. Oppenheim, "All-pole modelling of degraded speech," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 26, June 1978.

6. Ephraim, Y. and H. L. van Trees, "A spectrally-based signal subspace approach for speech enhancement," IEEE ICASSP, 804-807, 1995.

7. Hu, Y. and P. Loizou, A subspace approach for enhancing speech corrupted by colored noise, Proc. International Conference on Acoustics, Speech and Signal Processing, Vol. 1, 573-576, Orlando, FL, USA, May 2002.

8. Rezayee, A. and S. Gazor, "An adaptive KLT approach for speech enhancement," IEEE Trans. Speech Audio Processing, Vol. 9, 87-95, Feb. 2001.
doi:10.1109/89.902276

9. Mittal, U. and N. Phamdo, "Signal/noise KLT based approach for enhancing speech degraded by colored noise," IEEE Trans. Speech Audio Processing, Vol. 8, No. 2, 159-167, 2000.
doi:10.1109/89.824700

10. Deller, J. R., J. G. Proakis, and J. H. L. Hansen, Discrete-time Processing of Speech Signals, Prentice-Hall, 1997.

11. Boll, S. F., "Suppression of acoustic noise in speech using spectral subtraction," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 29, No. 2, 113-120, April 1979.

12. Weiss, M. R., E. Aschkenasy, and T. W. Parsons, "Processing speech signal to attenuate interference," Proc. IEEE Symp. Speech Recognition, 292-293, April 1974.

13. Lim, J. S. and A. V. Oppenheim, "Enhancement and band width compression of noisy speech," Proc. of the IEEE, Vol. 67, No. 12, 1586-1604, Dec. 1979.
doi:10.1109/PROC.1979.11540