Vol. 5

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-10-27

All-Optical Tunable Mirror Design Using Electromagnetically Induced Transparency

By Karim Abbasian, Ali Rostami, and Zia Koozekanani
Progress In Electromagnetics Research M, Vol. 5, 25-41, 2008
doi:10.2528/PIERM08072602

Abstract

A new and efficient proposal for all-optical tunable devices and systems using electromagnetically induced transparency (EIT) is proposed. For this purpose a slab doped with quantum dots for realization of three-level atomic system is considered. Density matrix formulation for evaluation of the proposed structure is used. The reflection and transmission coefficients of the considered slab are calculated and the related amplitude and phase quantities studied versus parameters of the structure. We show that some nanometer tuning with application of the control field is obtained. So, the proposed idea can open a new realization method of all-optical tunable devices and systems towards all-optical systems.

Citation


Karim Abbasian, Ali Rostami, and Zia Koozekanani, "All-Optical Tunable Mirror Design Using Electromagnetically Induced Transparency," Progress In Electromagnetics Research M, Vol. 5, 25-41, 2008.
doi:10.2528/PIERM08072602
http://www.jpier.org/PIERM/pier.php?paper=08072602

References


    1. Rostami, A. and K. Abbasian, All-optical filter design: Electromagnetically induced transparency and ring resonator, Proceeding of MICC-ICT'2007, Malaysia, 2007.

    2. Zhu, K.-D. and W. S. Li, "Electromagnetically induced transparency due to exciton-phonon interaction in an organic quantum well," J. Phys. B: At. Mol. Opt. Phys., Vol. 34, L679-L686, 2001.
    doi:10.1088/0953-4075/34/21/102

    3. Harris, S. E. and L. V. Hau, "Nonlinear optics at low light levels," Phys. Rev. Lett., Vol. 82, 4611, 1999.
    doi:10.1103/PhysRevLett.82.4611

    4. Harris, S. E., "Electromagnetically induced transparency," Physics Today, Vol. 36, No. 42, 1994.

    5. Agrawal, G. P., Nonlinear Fiber Optics, Academic Press, 0-12-045143-3, 2001.

    6. Yadipour, R., K. Abbasian, A. Rostami, and Z. D. Koozehkanani, "A novel proposal for ultra-high resolution and compact optical displacement sensor based on electromagnetically induced transparency in ring resonator," Progress In Electromagnetics Research, Vol. 77, 149-170, 2007.
    doi:10.2528/PIER07081201

    7. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press, ISBN: 0 521 43458 0, 2001.

    8. Petrosyan, D. and Y. P. Malakyan, "Electromagnetically induced transparency in a thin film," IEEE, 2000.

    9. Kasapi, A., M. Jain, G. Y. Yin, S. E. Harris, and , "Electromagnetically induced transparency: Propagation dynamics," Phys. Rev. Lett., Vol. 74, 2447, 1995.
    doi:10.1103/PhysRevLett.74.2447

    10. Fleischhauer, M., "Electromagnetically induced transparency and coherent-state preparation in optically thick media," Optics Express 107, Vol. 4, No. 2, 1999.

    11. Kimberg, V., Pulse propagation in photonic crystals and nonlinear media, Master Thesis, Royal Institute of Technology, Stockholm, Sweden, 2005.

    12. Slavcheva, G., J. M. Arnold, and R. W. Ziolkowski, "Ultrashort pulse lossless propagation through a degenerate three-level medium in nonlinear optical waveguides and semiconductor microcavities," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 9, No. 3, 929-939, 2003.
    doi:10.1109/JSTQE.2003.818844

    13. Grigoryan, G. G. and Y. T. Pashayan, "Propagation of pulses in a three-level medium at exact twophoton resonance," Physical Review A, Vol. 64, 013816, 2001.
    doi:10.1103/PhysRevA.64.013816

    14. Arkhipkin, V. G. and I. V. Timofeev, "Long distance propagation of resonant pulses under conditions of induced transparency," IEEE, 2000.

    15. Wang, N. and H. Rabitz, "Optimal control of optical pulse propagation in a medium of three-level systems," Physical Review A, Vol. 52, No. 1, 1995.
    doi:10.1103/PhysRevA.52.216

    16. Stomeo, T., M. T. Todaro, G. Visimberga, V. Vitale, A. Passaseo, R. Cingolani, M. DeVittorio, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, S. Cabrini, and E. Di Fabrizio, "Design of two-dimensional photonic-crystal mirrors for InGaAs QW laser applications," Microelectronic Engineering, Vol. 73-74, 377-382, 2004.
    doi:10.1016/S0167-9317(04)00131-5

    17. Linnik, M. and A. Christou, "Effects of Bragg mirror interface grading and layer thickness variations on VCSEL performance at 1.55 mm ," Department of Materials and Nuclear Engineering and Center for OptoElectronic Devices.

    18. Gross, B., N. Papageorgiou, V. Sautenkov, and A. Weis, "Velocity selective optical pumping and dark resonance in selective reflection spectroscopy," Physical Review A, Vol. 55, 2973.

    19. Rostami, A., H. Rasooli, and H. Baghban, "Proposal for ultra high performance infrared quantum dot," Optics Express, Vol. 16, No. 4, 2008.
    doi:10.1364/OE.16.002752

    20. Rostami, A., H. Baghban, and H. Rasooli, "Highly-enhanced second-order nonlinear susceptibility in tailored GaN-AlGaN-AlN quantum well structures," Accepted for publication in Physica B, 2008.

    21. Rostami, A., H. Rasooli, and H. Baghban, "Enhancement of absorption coefficient and electroabsorption in GaN/AlGaN centered defect quantum box (CDQB) nanocrystal," Accepted for publication in Physica B, 2008.

    22. Yadipour, R., K. Abbasian, A. Rostami, and Z. D. Koozehkanani, "A novel proposal for ultra-high resolution and compact optical displacement sensor based on electromagnetically induced transparency in ring resonator," Progress In Electromagnetics Research, Vol. 77, 149-170, 2007.
    doi:10.2528/PIER07081201

    23. Dai, X.-W., M. Yao, X.-J. Dang, and C.-H. Liang, "Transparency of a pair of epsilon-negative slab and mu-negative slab," Progress In Electromagnetics Research, Vol. 69, 237-246, 2007.
    doi:10.2528/PIER06120803

    24. Zhang, Y., J. Pulliainen, S. Koponen, and M. Hallikainen, "A semi-empirical algorithm of water transparency at the Green wavelength band of optical remote sensing," Progress In Electromagnetics Research, Vol. 37, 191-203, 2002.
    doi:10.2528/PIER02031506