Vol. 5

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-12-05

A Common Theoretical Basis for Preconditioned Field Integral Equations and the Singularity Expansion Method

By Robert J. Fleming
Progress In Electromagnetics Research M, Vol. 5, 111-136, 2008
doi:10.2528/PIERM08110501

Abstract

It is demonstrated that there is a common theoretical basis for the Singularity Expansion Method (SEM) and stabilized, preconditioned electric field and magnetic field integral equations (EFIE, MFIE) defining radiation and scattering from a closed perfect electric conductor in a homogeneous medium. An operator relation termed the Calderon preconditioner links the MFIE and EFIE, based on the fundamental Stratton-Chu integral representations for the problem geometry. This preconditioner is known to stabilize the ill-posed first kind EFIE, yielding the Modified EFIE (MEFIE). The same preconditioner has been applied to the weakly singular MFIE kernel, giving a Modified MFIE (MMFIE), the equation then being solved using the Fredholm determinant theory. Since this analytical integral theory is the foundation of the SEM, it follows that the Calderon preconditioner enables stabilized and common SEM representations to be defined for both the MEFIE and MMFIE. For a finite-sized object admitting only pole singularities, the solution of the preconditioned EFIE and MFIE is equivalent to the frequency-domain SEM solution. The common SEM representation differs only in the coupling coefficient terms. Coupling coefficients for the MFIE are known, however, explicit formulations for the EFIE, and the modified coupling coefficients for the MEFIE and MMFIE are new contributions.

Citation


Robert J. Fleming, "A Common Theoretical Basis for Preconditioned Field Integral Equations and the Singularity Expansion Method," Progress In Electromagnetics Research M, Vol. 5, 111-136, 2008.
doi:10.2528/PIERM08110501
http://www.jpier.org/PIERM/pier.php?paper=08110501

References


    1. Baum, C., "On the singularity expansion method for the solution of electromagnetic interaction problems," Interaction Note 88, December 1971.

    2. Baum, C., "Emerging technology for transient and broad-band analysis and synthesis of antennas and scatterers," Proceedings of the IEEE, Vol. 64, 1598-1616, November 1976.
    doi:10.1109/PROC.1976.10379

    3. Baum, C., Transient Electromagnetic Fields, No. The Singularity Expansion Method, 128-177, Sprinker-Verlag, New York, 1976.

    4. Licul, S. and W. Davis, "Unified frequency and time-domain antenna modeling and characterization," IEEE Transactions on Antennas and Propagation, Vol. 53, 2882-2888, September 2005.
    doi:10.1109/TAP.2005.854533

    5. Chauveau, J., N. de Beaucoudrey, and J. Sailllard, "Selection of contributing natural poles for the characterization of perfectly conducting targets in resonance region," IEEE Transactions on Antennas and Propagation, Vol. 55, 2610-2616, September 2007.
    doi:10.1109/TAP.2007.904081

    6. Baum, C., E. Rothwell, K. Chen, and D. Nyquist, "The singularity expansion method and its application to target identification," Proceedings of the IEEE, Vol. 79, 1481-1492, October 1991.

    7. Sarkar, T. and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antennas and Propagation Magazine, Vol. 37, 48-55, February 1995.
    doi:10.1109/74.370583

    8. Li, L. and C. Liang, "Generalized system function analysis of exterior and interior resonances of antenna and scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 52, 2064-2072, August 2004.
    doi:10.1109/TAP.2004.832319

    9. Miller, E. and G. Burke, "Using model-based parameter estimation to increase the physical interpretability and numerical efficiency of computational electromagnetics," Computer Physics Communications, Vol. 68, 43-75, November 1991.

    10. Werner, D. and R. Allard, "The simultaneous interpolation of antenna radiation patterns in both the spatial and frequency domains using model-based parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 48, 383-392, March 2000.
    doi:10.1109/8.841899

    11. Kress, R., Linear Integral Equations, Springer, Berlin, 1989.

    12. Canning, F., "Singular value decomposition of integral equations of em and applications to the cavity resonance problem ," IEEE Transactions on Antennas and Propagation, Vol. 37, 1156-1163, September 1989.
    doi:10.1109/8.35796

    13. Marin, L. and R. Latham, "Representation of transient scattered fields in terms of free oscillations of bodies," Proceedings of the IEEE, 640-641, May 1972.
    doi:10.1109/PROC.1972.8712

    14. Marin, L., "Natural mode representation of transient scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 21, 809-818, November 1973.

    15. Adams, R. and G. Brown, "Stabilisation procedure for electric field integral equation," Electronics Letters, Vol. 35, 2015-2016, November 1999.

    16. Adams, R. J., "Physical and analytical properties of a stabilized electric field integral equation ," IEEE Transactions on Antennas and Propagation, Vol. 52, 362-372, February 2004.
    doi:10.1109/TAP.2004.823957

    17. Adams, R. J., "Combined field integral equation formulations for electromagnetic scattering from convex geometries," IEEE Transactions on Antennas and Propagation, Vol. 52, 1294-1303, May 2004.
    doi:10.1109/TAP.2004.827246

    18. Adams, R. and N. Champagne, "A numerical implementation of a modified form of the electric field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 52, 2262-2266, September 2004.
    doi:10.1109/TAP.2004.834112

    19. Mautz, J. and R. Harrington, "H-field, E-field and combined-field solutions for conducting bodies of revolution," A.E. U, Vol. 32, 157-163, 1978.

    20. Poggio, A. and E. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics, 159-164, R. Mittra (ed.), Pergamon, Oxford, 1973.

    21. Maue, A., "Zur formuliering, eines allgemenen beugengsproblems durch eine integralgleichung," Z. Phys., Vol. 126, No. 7, 601-618, 1949.
    doi:10.1007/BF01328780

    22. Hsiao, G. and R. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, 316-328, March 1997.
    doi:10.1109/8.558648

    23. Andriulli, F., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative calderon preconditioner for the electric field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 56, 2398-2412, August 2008.
    doi:10.1109/TAP.2008.926788

    24. Jones, D., Methods in Electromagnetic Wave Propagation, Engineering Science Series, Oxford University Press, Oxford, United Kingdom, 1994.

    25. Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics: An Introduction, Springer-Verlag, New York, USA, 2001.

    26. Dolph, C. and S. Cho, "On the relationship between the singularity expansion method and the mathematical theory of scattering," IEEE Transactions on Antennas and Propagation, Vol. 28, 888-896, November 1980.

    27. Pocklington, H., "Electrical oscillations in wires," Proceedings of Cambridge Phil. Soc., Vol. 9, 324-332, 1897.

    28. Oseen, C., "Uber die elektromagnetische Schwingungen an dünnen Stäben," Ark. Mat. Astron. Fys., Vol. 9, 1-27, 1914.

    29. Hallen, E., "Uber die elektrischen Schwingungen in drahtförmigen Leitern," Uppsala Univ. Arsskr., No. 1, 1-102, 1930.

    30. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, USA, 1941.

    31. Ross, G., "A time domain criterion for the design of wideband radiating elements ," IEEE Transactions on Antennas and Propagation, Vol. 16, 355-356, May 1968.
    doi:10.1109/TAP.1968.1139174

    32. Schmitt, H., C. Harrison, Jr, C. Williams, and Jr, "Calculated and experimental response of thin cylindrical antennas to pulse excitation," IEEE Transactions on Antennas and Propagation, Vol. 14, 120-127, March 1966.
    doi:10.1109/TAP.1966.1138652

    33. Michalski, K., "Bibliography of the singularity expansion method and related topics," Electromagnetics, Vol. 1, 493-511, 1981.
    doi:10.1080/02726348108915153

    34. Hanson, G., "An sem analysis of the voltage induced upon a printed strip antenna by a transient plane wave," IEEE Transactions on Antennas and Propagation, Vol. 41, 1742-1746, December 1993.
    doi:10.1109/8.273321

    35. Fikioris, G., "A note on the method of analytical regularization," IEEE Transactions on Antennas and Progagation Magazine, Vol. 43, 34-40, April 2001.

    36. Nosich, A. I., "The method of analytical regularization in wave scattering and eigenvalue problems: Foundations and review of solutions," IEEE Antennas and Propagation Magazine, Vol. 41, 34-49, June 1999.
    doi:10.1109/74.775246

    37. Burton, A. and G. Miller, "The application of integral equation methods to the numerical solution of some exterior boundary value problems," Proc. Roy. Soc. London A., Vol. 323, 201-210, 1971.
    doi:10.1098/rspa.1971.0097

    38. Marks, R. B., "Application of the singular function expansion to an integral equation for scattering," IEEE Transactions on Antennas and Propagation, Vol. 34, 725-728, May 1986.
    doi:10.1109/TAP.1986.1143884

    39. Marks, R. B., "The singular function expansion in time-dependent scattering," IEEE Transactions on Antennas and Propagation, Vol. 37, 1559-1565, December 1989.
    doi:10.1109/8.45098

    40. Liu, Z., R. Adams, and L. Carin, "Well-conditioned mlfma formulation for closed pec targets in the vicinity of a half space," IEEE Transactions on Antennas and Propagation, Vol. 51, 2822-2829, October 2003.

    41. Yaghjian, A., "Banded-matrix preconditioning for electric-field integral equations," Proc. IEEE Antennas and Propagation Int. Symp., 1806-1809, 1997.

    42. Marin, L., "Natural mode representation of transient scattering from rotationally symmetric bodies," IEEE Transactions on Antennas and Propagation, Vol. 22, 266-274, March 1974.
    doi:10.1109/TAP.1974.1140779

    43. Mikhlin, S. G., Mathematical Physics, An Advanced Course, Vol. 11 of Applied Mathematics and Mechanics, North Holland Publishing Company, Amsterdam, Holland, 1970.

    44. Young, N., An Introduction to Hilbert Space, Cambridge University Press, Cambridge, United Kingdom, 1988.

    45. Smithies, F., Integral Equations, Cambridge University Press, London, United Kingdom, 1958.

    46. Goursat, E., A Course in Mathematical Analysis, Vol. 2, Ginn and Company, New York, USA, 1917.

    47. Golberg, M., Solution Methods for Integral Equations Theory and Applications, Mathematical Concepts and Methods in Science and Engineering, Plenum Press, New York, 1979.

    48. Steinberg, S., "Meromorphic families of compact operators," Arch. Rat. Mech. Anal., Vol. 31, 372-379, 1968.
    doi:10.1007/BF00251419

    49. Pearson, L. W., "Evidence that bears on the left half plane asymptotic behavior of the sem expansion of surface currents," Electromagnetics, Vol. 1, 395-402, 1981.
    doi:10.1080/02726348108915144

    50. Morgan, M., "Singularity expansion representations of fields and currents in transient scattering," IEEE Transactions on Antennas and Propagation, Vol. 32, 466-472, May 1984.
    doi:10.1109/TAP.1984.1143350

    51. Heyman, E. and L. Felsen, "A wavefront interpretation of the singularity expansion method," IEEE Transactions on Antennas and Propagation, 706-718, July 1985.

    52. Richards, M., "Sem representation of the early and late time fields scattered from wire targets," IEEE Transactions on Antennas and Propagation, Vol. 42, 564-566, April 1994.

    53. Fleming, R. J., "A transfer function estimation method integrated into supernec for the approximation of the wideband electromagnetic response of complex structures,", Master's thesis, University of Witwatersrand, Johannesburg, South Africa, May 2003.

    54. Brittingham, J., E. Miller, and J. Willows, "Pole extraction from real-frequency information," Proceedings of the IEEE, Vol. 68, 263-273, February 1980.
    doi:10.1109/PROC.1980.11621

    55. Burke, G., E. Miller, S. Chakrabati, and K. Demarest, "Using model-based parameter estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE Trans. Magn., Vol. 25, 2807-2809, July 1989.

    56. Householder, A., "On prony's method of fitting exponential decay curves and multiplehit survival curves ,", Technical Report ORNL-455, Oak Ridge National Laboratory, Oak Ridge, TN, 1950.

    57. Rahman, M. and K. Yu, "Total least squares approach for frequency estimation using linear prediction," IEEE Transactions Acoustics, Speech and Signal Processing, Vol. 35, 1440-1454, October 1987.
    doi:10.1109/TASSP.1987.1165059

    58. Hua, Y. and T. Sarkar, "On svd for estimating generalized eigenvalues of singular matrix pencil in noise," IEEE Transactions Signal Processing, Vol. 39, 892-900, April 1991.

    59. Tesche, F. M., "On the analysis of scattering and antenna problems using the singularity expansion technique," IEEE Transactions on Antennas and Propagation, Vol. 21, 53-62, January 1973.
    doi:10.1109/TAP.1973.1140398

    60. Baum, C. E., "On the singularity expansion method for the case of first order poles," Interaction Note 129, 1972.