Vol. 11
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-25
Coherent Field Approximation of Plane Wave Scattering from 1D-Rough Mirrors
By
Progress In Electromagnetics Research M, Vol. 11, 177-190, 2010
Abstract
For an harmonic plane wave impinging on a perfectly reflecting smooth plane the total field, incident and reflected, satisfying on this plane a Dirichlet or Neumann boundaray condition, has an integral representation that we extend to the specular reflection from a perfectly reflecting rough plane. To make this generalization possible, some constraints must be imposed on the wavelength of the incident field and on the rough amplitude to make the diffuse field negligible so that only the coherent field is important and we may use the fact that the coherent power is identical to that of a smooth surface. This generalized integral representation supplies an approximation of the coherent field valid far from the rough plane. We limit the discussion to acoustic, TE, TM electromagnetic wave incident on 1D-perfectly reflecting rough planes with roughness described by zig-zag functions piecewise linear with opposite slop on adjacent intervalls.
Citation
Pierre Hillion , "Coherent Field Approximation of Plane Wave Scattering from 1D-Rough Mirrors," Progress In Electromagnetics Research M, Vol. 11, 177-190, 2010.
doi:10.2528/PIERM09011202
http://www.jpier.org/PIERM/pier.php?paper=09011202
References

1. DeSanto, J. A., Scattering, Academic Press, New York, 2002.

2. DeSanto, J. A. and P. A. Martin, "On the derivation of boundary integral equation for scattering by an infinite one-dimensional rough surface," Acous. Soc. Am., Vol. 102, 67-77, 1997.
doi:10.1121/1.419714

3. DeSanto, J. A. and P. A. Martin, "On the derivattion of boundary integral equation for scattering by an infinite two-dimensional rough surface," J. Math. Phys., Vol. 39, 894-912, 1998.
doi:10.1063/1.532359

4. Saillard, M. and A. Sentenac, "Rigorous solution for electromagnetic scattering from rough surfaces," Waves Random Media, Vol. 11, R103-R137, 2001.
doi:10.1088/0959-7174/11/3/201

5. Soriano, G. and M. Saillard, "Scattering of electromagnetic waves from two-dimensional rough surfaces with an impedance pproximation," J. Opt. Soc. Am. A, Vol. 18, 124-133, 2001.
doi:10.1364/JOSAA.18.000124

6. Chandler-Wilde, S. N. and B. A. Zhang, "Uniqueness result for scattering by infinite rough surfaces," SIAM J. Appl. Math., Vol. 58, 1774-1790, 1998.
doi:10.1137/S0036139996309722

7. Tsang, L., A. K. Jin, and K. H. Ding, Scattering of Electromagnetic Waves: Theory and Application, Wiley, New York, 2000.
doi:10.1002/0471224286

8. Tsang, L. and A. K. Jin, Scattering of Electromagnetic Waves: Advanced Topics, Wiley, New York, 2001.
doi:10.1002/0471224278

9. Murakami, H., "Laminated composite plate theory with improved in-plane response," J. Appl. Mech., Vol. 53, 661-666, 1986.
doi:10.1115/1.3171828

10. Hillion, P., "Diffraction of scalar waves at plane apertures: A different approach," Journal of Electromagnetic Waves and Applications, Vol. 14, 1677-1687, 2000.

11. Ishimaru, A., Wave Propagation and Scattering in Random Media, Vol. 2, Academic Press, New York, 1978.

12. DeBoor, C., A Practical Guide to Splines, Springer, New York, 1978.
doi:10.1007/978-1-4612-6333-3