Vol. 6

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-03-23

Reconstruction Permittivity Tensor and Principal Axis for Uniaxial Medium in Microwave Band

By Bing Wei, Fei Wang, and De-Biao Ge
Progress In Electromagnetics Research M, Vol. 6, 107-122, 2009
doi:10.2528/PIERM09021306

Abstract

The relationship of permittivity tensor of anisotropic medium in principal coordinate system and laboratory coordinate system is given. The characteristic of permittivity tensor of uniaxial anisotropic medium in the laboratory coordinate system is discussed. The transverse permittivity of an anisotropic plate are reconstructed in laboratory coordinate system based on the resonance and polarization characteristics of back scattering radar cross section (RCS) in wide band. Then, a new scheme of reconstructing the principal axis direction for a uniaxial sample plate is proposed, subject to the principal axis is unknown. The back scattering characteristics of a sample plate are discussed when the electromagnetic (EM) wave of different polarization is incident perpendicularity to the sample plate. Three sample plates, which are cut perpendicularly to the x', y', and z' axis in the laboratory coordinate system, are required. A numerical reconstruction example is given to demonstrate the availability of presented scheme.

Citation


Bing Wei, Fei Wang, and De-Biao Ge, "Reconstruction Permittivity Tensor and Principal Axis for Uniaxial Medium in Microwave Band," Progress In Electromagnetics Research M, Vol. 6, 107-122, 2009.
doi:10.2528/PIERM09021306
http://www.jpier.org/PIERM/pier.php?paper=09021306

References


    1. Wang, M.Y., J. Xu, J. Wu, B. Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
    doi:10.2528/PIER07122602

    2. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
    doi:10.2528/PIER07071905

    3. Ding, W., L. Chen, and C.-H. Liang, "Characteristics of electromagnetic wave propagation in biaxial anisotropic left-handed materials," Progress In Electromagnetics Research, Vol. 70, 37-52, 2007.
    doi:10.2528/PIER07011001

    4. Gong, Z. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
    doi:10.2528/PIER06071301

    5. Kristensson, G., S. Poulsen, and S. Rikte, "Propagators and scattering of electromagnetic waves in planar bianisotropic slabs --- An application to frequency selective structures," Progress In Electromagnetics Research, Vol. 48, 1-25, 2004.
    doi:10.2528/PIER04031503

    6. Bass, F. and L. Resnick, "The electromagnetic-wave propagation through a stratified inhomogeneous anisotropic medium," Progress In Electromagnetics Research, Vol. 48, 67-83, 2004.
    doi:10.2528/PIER03122302

    7. Zheng, L. G. and W. X. Zhang, "Analysis of bi-anisotropic Pbg structure using plane wave expansion method," Progress In Electromagnetics Research, Vol. 42, 233-246, 2003.
    doi:10.2528/PIER03012101

    8. Zhang, M., T. S. Yeo, L. W. Li, and M. S. Leong, "Electromagnetic scattering by a multilayer gyrotropic bianisotropic circular cylinder," Progress In Electromagnetics Research, Vol. 40, 91-111, 2003.
    doi:10.2528/PIER02101001

    9. Zhang, M., L. W. Li, T. S. Yeo, and M. S. Leong, "Scattering by a gyrotropic bianisotropic cylinder of arbitrary cross section: An analysis using generalized multipole technique ," Progress In Electromagnetics Research, Vol. 40, 315-333, 2003.
    doi:10.2528/PIER02103101

    10. Wei, B. and D. B. Ge, "Scattering by a two-dimensional cavity filled with anisotropic medium," Waves in Random Media, Vol. 13, No. 4, 223-240, 2003.
    doi:10.1088/0959-7174/13/4/302

    11. Zheng, H.-X., X.-Q. Sheng, and E. K.-N. Yung, "Computation of scattering from anisotropically coated bodies using conformal FDTD," Progress In Electromagnetics Research, Vol. 35, 287-297, 2002.
    doi:10.2528/PIER02030804

    12. Chen, H. T., G. Q. Zhu, and S. Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
    doi:10.2528/PIERB08080202

    13. Yang, L. L., D. B. Ge, and B. Wei, "An equivalent anisotropic coating technique based on dyadic surface impedance boundary condition," Chinese Journal of Electronics, Vol. 14, No. 4, 712-716, 2005.

    14. Huang, P. K. and H. C. Yin, "Equivalent currents on an anisotropic material backed by a metal surface and their relation," Journal of Systems Engineering and Electronics, Vol. 11, No. 4, 1-10, 2000.

    15. Yin, H. C., Z. M. Chao, and Y. P. Xu, "A new free-space method for measurement of electromagnetic parameters of biaxial materials at microwave frequencies," Microwave and Optical Technology Letters, Vol. 46, No. 1, 72-78, Jul. 5, 2005.
    doi:10.1002/mop.20905

    16. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
    doi:10.2528/PIERB08072005

    17. Chen, X., T. M. Grzegorczyk, and J. A. Kong, "Optimization approach to the retrieval of the constitutive parameters of slab of general bianisotropic medium ," Progress In Electromagnetics Research, Vol. 60, 1-18, 2006.
    doi:10.2528/PIER05120601

    18. Fedorov, F. I., G. N. Borzdov, and L. M. Barkovskii, "Operator for the indices of refraction of plane waves in dispersive anisotropic media," Journal of Applied Spectroscopy, Vol. 43, No. 4, 1176-1182, 1985.
    doi:10.1007/BF00662340

    19. Borzdov, G. N., "An intrinsic tensor technique in Minkowski space with applications to boundary value problems," J. Math. Phys., Vol. 34, No. 7, 3162-3196, 1993.
    doi:10.1063/1.530069

    20. Kong, J. A., Electromagnetic Wave Theory, High Education Press, 2002.

    21. Taflov, A. and S. C. Hagness, Computational Electrodynamics --- The Finite Difference Time Domain Method, 3 Ed., Artech House, 2005.

    22. John, S. and H. Scott, "The finite-difference time-domain method applied to anisotropic material," IEEE Trans. Antenna Propag., Vol. 41, No. 7, 994-999, 1993.
    doi:10.1109/8.237636