Vol. 6

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-04-07

Estimation and Measurement of Biological Tissues Using Optical Simulation Method

By G. Jagajothi and Singaravelu Raghavan
Progress In Electromagnetics Research M, Vol. 6, 155-165, 2009
doi:10.2528/PIERM09021604

Abstract

This paper mainly deals with the optical properties of biological tissues that are measured using laser reflectometry method. The result is compared with the phantom and simulation values to get accurate result. The surface Backscattering was determined by laser reflectometry. The tissue equivalent phantom would be prepared with the help of white paraffin wax mixed with various colour pigments in multiple proportions. A familiar Monte Carlo Simulation is used for the analysis of the optical properties of the tissue. The normalized backscattered intensity (NBI) signals from the tissue surface, measured by the output probes after digitization are used to reconstruct the reflectance images of tissues in various layers below the skin surface. This method was useful to trace the abnormal in the tissue.

Citation


G. Jagajothi and Singaravelu Raghavan, "Estimation and Measurement of Biological Tissues Using Optical Simulation Method," Progress In Electromagnetics Research M, Vol. 6, 155-165, 2009.
doi:10.2528/PIERM09021604
http://www.jpier.org/PIERM/pier.php?paper=09021604

References


    1. Kwon, O., et al., "Estimation of anomaly location and size using electrical impedance tomography," IEEE Trans. on Biomedical Eng., Vol. 50, 89-96, 2003.
    doi:10.1109/TBME.2002.805474

    2. Anderson, R. R. and J. A. Parrish, "The optics of human skin," J. Invest. Dermotol., Vol. 77, 13-19, 1981.
    doi:10.1111/1523-1747.ep12479191

    3. Van Gemert, T. M. J., S. L. Jacques, and H. J. C. Sterenborg, "Skin optics," IEEE Trans. on Biomed. Eng., Vol. 36, 1146-1154, 1989.
    doi:10.1109/10.42108

    4. Schmitt, J. M., G. X. Zhou, and E. C. Walker, "Multilayer model of photon diffusion in skin," J. Opt. Soc. Am., Vol. A7, 2141-2153, 1990.
    doi:10.1364/JOSAA.7.002141

    5. Hintz, S. R., D. A. Benaron, J. P. Vanhouten, J. L. Duckworth, H. S. Lic, D. K. Stevenson, and W. F. Cheong, "Stationary head band for clinical time of flight optical imaging at the bedside," Photochem. Photobiol., Vol. 68, 361-369, 1998.
    doi:10.1111/j.1751-1097.1998.tb09693.x

    6. Fantini, S., S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position and optical properties of breast tumors in viva by noninvasive optical methods," Appl. Opt., Vol. 37, 1982-1989, 1998.
    doi:10.1364/AO.37.001982

    7. Hillmann, E. M. C., J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Sehimdt, D. T. Delpy, and S. A. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Boi., Vol. 46, 1117-1130, 2001.
    doi:10.1088/0031-9155/46/4/315

    8. Li, H., Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, and R. P. Mason, "Non-invasive investigation for blood oxygenation dynamics of tumors by near-infrared spectroscopy," Appl. Opt., Vol. 39, 5231-5243, 2000.
    doi:10.1364/AO.39.005231

    9. Hampel, U., E. Scheicher, H. Zepnick, and R. Freyer, "Clinical NIR spectroscopy and optical tomography of testis," Proc. SPIE2001, Vol. 4432, 210-220, 2001.
    doi:10.1117/12.447137

    10. Jiao, S., G. Yao, and L. V. Wang, "Depth resolved two-dimensional stoke vectors of backscattered light and Mulller matrices of biological tissue measured with optical coherence tomography," Appl. Opt., Vol. 39, 6318-6324, 2000.
    doi:10.1364/AO.39.006318

    11. Chacko, S. and M. Singh, "3-D reconstruction of transillumination tomographic images of human breast phantoms by red and infrared lasers," IEEE Trans. Biomed. Eng., Vol. 47, 131-135, 2000.
    doi:10.1109/10.817628

    12. Cubeddu, R., A. Pifferi, P. Taroni, A. Torricerlli, and G. Valentinil, "Imaging with diffusing light: An experimental study on the effect of the background optical properties," Appl. Opt., Vol. 37, 3564-3573, 1998.
    doi:10.1364/AO.37.003564

    13. Schmitt, J. M., G. X. Zhou, and E. C.Walkker, "Multilayer model of photon diffusion in skin," J. Opt. Soc. Amer. A, Vol. 7, 2141-2153, 1990.
    doi:10.1364/JOSAA.7.002141

    14. Colak, S. B., M. B. Van Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, "Clinical optical tomography and NIR spectroscopy for breast cancer detection," IEEE J. Select Topics Quantum Electron., Vol. 5, 143-1158, 1999.
    doi:10.1109/2944.796341

    15. Chacko, S. and M. Singh, "Multi-layer imaging of human organs by measurement of laser back-scattering radiation," Med. Biol. Eng. Comput., Vol. 37, 278-284, 1999.
    doi:10.1007/BF02513300

    16. Colak, S. B., M. B. Van Mark, G. W. Hoof, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, "Clinical optical tomography and NIR spectroscopy for breast cancer detection," IEEE J. Select Topics Quantum Electron., Vol. 5, 1143-1158, 1999.
    doi:10.1109/2944.796341

    17. Cubeddu, R., A. Pifferi, P. Taroni, A. Torricelli, and G. A. Valentini, "Solid tissue phantom for photon migration studies," Phys. Med. Biol., Vol. 42, 1971-1979, 1997.
    doi:10.1088/0031-9155/42/10/011

    18. Dehghani, H. and D. T. Delpy, "Near infrared spectroscopy of adult head. Effect of scattering and absorbing obstructions in the cerebro spinal fluid layer on light on light distribution in the tissue," Appl. Op., Vol. 39, 4721-4729, 2000.
    doi:10.1364/AO.39.004721

    19. Flock, S. T., M. S. Patterson, B. C. Wilson, and D. R. Wyman, "Monte Carlo modeling of light propagation in highly scattering tissue --- I: Model predictions and comparison with diffusion theory," IEEE Trans. Biomed., Vol. 36, 1162-1168, 1989.
    doi:10.1109/TBME.1989.1173624

    20. Grosenick, D., H. Wabnitz, H. Hrinneberg, and K. T. Oesta, "Development of a time-domain optical mannography and first invivo applications ," Appl. Opt., Vol. 38, 2927-2943, 1999.
    doi:10.1364/AO.38.002927

    21. Van Stavren, H. J., C. J. M. Moses, J. Van Maries, S. A. Prahl, and M. J. C. Van, "Light scattering in intra lipid 10% in the wavelength range of 400-1100 nm," Appl. Opt., Vol. 30, 4507-4514, 1991.
    doi:10.1364/AO.30.004507

    22. Farrell, T. J., M. S. Patterson, and M. Essenpresis, "Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry ," Appl. Opt., Vol. 37, 1958-1972, 1998.
    doi:10.1364/AO.37.001958

    23. Chinn, S. R., E. A. Swanson, and J. G. Fujimoto, "Optical coherencetomography using a frequency tunable optical source," Opt. Lett., Vol. 22, 340-342, 1997.
    doi:10.1364/OL.22.000340

    24. Pougue, B. W., et al., "Three dimensional simulation of near infrared diffusion in tissue: Boundary condition and geometry analysis for finite-element image reconstruction," Appl. Optics, Vol. 40, 588-599, 2001.
    doi:10.1364/AO.40.000588

    25. Mitic, G., J. Kober, J. Otto, E. Piles, E. Solkner, and W. Zinth, "Time gated transillumination of biological tissues and tissue like phantoms ," Appl. Opt., Vol. 33, 6699-6709, 1994.
    doi:10.1364/AO.33.006699

    26. Anderson-Engles, S., R. Berg, S. Svanberg, and O. Jarlman, "Time resolved transillumination for medical diagnostics," Opt. Lett., Vol. 15, 1179-1181, 1990.
    doi:10.1364/OL.15.001179

    27. Torricelli, A., A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, "Invivo optical characterization of human tissues from 610 to 1010 nm by time resolved reflectance spectroscopy," Phys. Med. Biol., Vol. 46, 2227-2237, 2001.
    doi:10.1088/0031-9155/46/8/313

    28. Arridge, S. R., Z. P. Vander, D. T. Delpy, and M. Cope, "Reconstruction methods of infra-red absorption imaging," Proc. SPIE, Vol. 1431, 204-215, 1991.
    doi:10.1117/12.44191

    29. Shanthi, S. and M. Singh, "Laser reflectance imaging of human organs and comparison with perfusion images," Med. Biol.Eng. Comput., Vol. 35, 253-258, 1997.
    doi:10.1007/BF02530046