Vol. 6

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Theoretical Modeling of a Metal-Clad Planar Waveguide Based Biosensors for the Detection of Pseudomonas-Like Bacteria

By Vivek Singh and Dinesh Kumar
Progress In Electromagnetics Research M, Vol. 6, 167-184, 2009


In this paper, a metal-clad planar optical waveguide biosensor with five layer structure is studied theoretically for the detection of Pseudomonas and Pseudomonas-like bacteria. Using a very simple boundary matching technique, we derive the mode equation and other necessary formulae for the proposed biosensor and analyse its performance under different conditions related to its constituents. The numerical results presented in this paper leads to a significant optimization of the important design parameters to sense micro-scale biological objects. Also, we compare our computed results with the results given for a biosensor with four layer structure. In addition, we discuss the importance and need of the inclusion of the thickness of an affinity layer as fifth layer in the four layer structure of the metal clad planar waveguide.


Vivek Singh and Dinesh Kumar, "Theoretical Modeling of a Metal-Clad Planar Waveguide Based Biosensors for the Detection of Pseudomonas-Like Bacteria," Progress In Electromagnetics Research M, Vol. 6, 167-184, 2009.


    1. Tiefenthaler, K. and W. Lukosz, "Integrated optical switches and glass sensor," Opt. Letter, Vol. 10, 137-139, 1984.

    2. Tiefenthaler, K. and W. Lukosz, "Sensitivity of grating couplers as integrated optical chemical sensors," Rev. Mod. Phys., Vol. 49, 361-420, 1977.

    3. Kunz, R. E., "Miniature integrated optical modules for chemical and biological sensing," Sens. Actuators B, Vol. 38, 13-28, 1997.

    4. Lukosz, W., "Integrated optical chemical and direct biochemical sensors," Sens. Actuators B, Vol. 29, 3750, 1995.

    5. Horvath, R., G. Fricsovszky, and E. Pap, "Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition," Biosensors Bioelectron., Vol. 18, 415-428, 2003.

    6. Hervath, R., et al., "Optical waveguide sensor for on-line monitoring of bacteria," Opt. Letter, Vol. 28, 1233-1235, 2003.

    7. Marazuela, M. D., et al., "Fiber-optic biosensors --- An overview," Anal. Bioanal Chem., Vol. 372, 664-682, 2002.

    8. Ivnitski, D., et al., "Review: Biosensors for detection of pathogenic bacteria," Biosens. Bioelectron, Vol. 14, 599-624, 1999.

    9. Udd, E., "An overview of fiber optic sensors," Rev. Sci. Instrum., Vol. 66, 4015-4030, 1995.

    10. Kuswandi, B., "Simple optical fiber biosensor based on immobilized enzyme for monitoring of trace having metal ions," Anal. Bioanal. Chem., Vol. 376, 1104-1110, 2003.

    11. Horvath, R., et al., "Measurement of guided light mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett., Vol. 84, 4044-4046, 2004.

    12. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sensors and Actuators B, Vol. 54, 3-15, 1999.

    13. Sharma, A. K. and B. D. Gupta, "Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection," Optical Fiber Technol., Vol. 12, 87-100, 2006.

    14. Horvath, R., H. C. Pederson, and N. Skivensen, "Monitoring of living cell attachment and spreading using reverse symmetry wave-guide sensing," Appl. Phys. Letters, Vol. 86, 071101-071103, 2005.

    15. Skivensen, N., R. Horvath, and H. C. Pederson, "Optimization of metal-clad waveguide sensor," Sensor and Actuators B, Vol. 106, 668-676, 2005.

    16. Skivensen, N., R. Horvath, S. Thinggaaed, N. B. Larsen, and H. C. Pedersen, "Deep-probe metal-clad waveguide biosensors," Biosensor and Bioelectronics, Vol. 22, 1282-1288, 2007.

    17. Ksendzov, A. and Y. Lin, "Integrated Optics ring-resonator sensor for protein detection," Opt. Lett., Vol. 30, 3344-3346, 2005.

    18. Yalcin, A., et al., "Optical sensing of biomolecules using micro -ring resonators," IEEE J. Sel. Topics Quantum Electron, Vol. 12, 148-154, 2006.

    19. Blanco, F. J., et al., "Microfluidic optical Integrated CMOS compatible devices for level free biochemical sensing," J. Micromech. Microeng., Vol. 16, 1006-1016, 2006.

    20. Densmore, A., et al., "A silicon-on-insulator photonic wire based evanescent field sensor," IEEE Photonics Technology Letters, Vol. 18, No. 23, 2520-2522, 2006.

    21. Veldhuis, G. J., O. Parriaux, H. J. W. Hockstra, and P. V. Lambeck, "Sensitivity enhancement in evanescent optical waveguide sensors ," J. of Lightw. Technol., Vol. 18, 677-682, 2000.

    22. Jourab, M., et al., "The development of a metal clad waveguide sensor for the detection of particles," Sensors and Actuators B, Vol. 90, 296-307, 2003.

    23. Jourab, M., et al., "An integrated metal clad leaky waveguide sensor for detection of bacteria," Anal. Chemistry, Vol. 77, 232-242, 2005.

    24. Taya, S. A., M. M. Shabat, and H. M. Khalil, "Enhancement of sensitivity in optical waveguide sensors using left-handed materials,", doi:10.1016/j.ijleo.2007.12.001, 2007.

    25. Huang, S. Y. and S. Y. Wang, "Light propagation characteristics in various dielectric waveguide," Chinese Journal of Physics, Vol. 24, No. 2, 129-137, 1986.

    26. Fletchert, M. and G. I. Loeb, "Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces ," Applied and Environmental Microbiology, Vol. 37, No. 1, 67-72, 1979.

    27. Morell, A. and Y. H. Ahn, "Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters," Journal of Marine Research, Vol. 48, 145-175, 1990.

    28. Lavers, C. R., K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sensors and Actuators B, Vol. 69, 85-95, 2000.

    29. Campbell, A. N., E. M. Kartzmark, and W. E. Falconer, "The system: Nicotine-methylethyl ketone-water," Can. J. Chem., Vol. 36, 1475-1486, 1958.

    30. Debenham, M. and G. D. Dew, "The refractive index of toluene in the visible spectral region," J. Phys. E: Sci. Instrum., Vol. 14, 544-545, 1981.

    31. Rostami, A. and H. Motavali, "Asymptotic iteration method: A powerful approach for analysis of inhomogeneous dielectric slab waveguides," Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008.

    32. Wang, Z. J. and J. F. Dong, "Analysis of guided modes in asymmetric left-handed slab waveguides," Progress In Electromagnetics Research, Vol. 62, 203-215, 2006.

    33. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.