Vol. 6

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-04-09

Theoretical Modeling of a Metal-Clad Planar Waveguide Based Biosensors for the Detection of Pseudomonas-Like Bacteria

By Vivek Singh and Dinesh Kumar
Progress In Electromagnetics Research M, Vol. 6, 167-184, 2009
doi:10.2528/PIERM09021701

Abstract

In this paper, a metal-clad planar optical waveguide biosensor with five layer structure is studied theoretically for the detection of Pseudomonas and Pseudomonas-like bacteria. Using a very simple boundary matching technique, we derive the mode equation and other necessary formulae for the proposed biosensor and analyse its performance under different conditions related to its constituents. The numerical results presented in this paper leads to a significant optimization of the important design parameters to sense micro-scale biological objects. Also, we compare our computed results with the results given for a biosensor with four layer structure. In addition, we discuss the importance and need of the inclusion of the thickness of an affinity layer as fifth layer in the four layer structure of the metal clad planar waveguide.

Citation


Vivek Singh and Dinesh Kumar, "Theoretical Modeling of a Metal-Clad Planar Waveguide Based Biosensors for the Detection of Pseudomonas-Like Bacteria," Progress In Electromagnetics Research M, Vol. 6, 167-184, 2009.
doi:10.2528/PIERM09021701
http://www.jpier.org/PIERM/pier.php?paper=09021701

References


    1. Tiefenthaler, K. and W. Lukosz, "Integrated optical switches and glass sensor," Opt. Letter, Vol. 10, 137-139, 1984.
    doi:10.1364/OL.9.000137

    2. Tiefenthaler, K. and W. Lukosz, "Sensitivity of grating couplers as integrated optical chemical sensors," Rev. Mod. Phys., Vol. 49, 361-420, 1977.
    doi:10.1103/RevModPhys.49.361

    3. Kunz, R. E., "Miniature integrated optical modules for chemical and biological sensing," Sens. Actuators B, Vol. 38, 13-28, 1997.
    doi:10.1016/S0925-4005(97)80167-0

    4. Lukosz, W., "Integrated optical chemical and direct biochemical sensors," Sens. Actuators B, Vol. 29, 3750, 1995.
    doi:10.1016/0925-4005(95)01661-9

    5. Horvath, R., G. Fricsovszky, and E. Pap, "Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition," Biosensors Bioelectron., Vol. 18, 415-428, 2003.
    doi:10.1016/S0956-5663(02)00154-9

    6. Hervath, R., et al., "Optical waveguide sensor for on-line monitoring of bacteria," Opt. Letter, Vol. 28, 1233-1235, 2003.
    doi:10.1364/OL.28.001233

    7. Marazuela, M. D., et al., "Fiber-optic biosensors --- An overview," Anal. Bioanal Chem., Vol. 372, 664-682, 2002.
    doi:10.1007/s00216-002-1235-9

    8. Ivnitski, D., et al., "Review: Biosensors for detection of pathogenic bacteria," Biosens. Bioelectron, Vol. 14, 599-624, 1999.
    doi:10.1016/S0956-5663(99)00039-1

    9. Udd, E., "An overview of fiber optic sensors," Rev. Sci. Instrum., Vol. 66, 4015-4030, 1995.
    doi:10.1063/1.1145411

    10. Kuswandi, B., "Simple optical fiber biosensor based on immobilized enzyme for monitoring of trace having metal ions," Anal. Bioanal. Chem., Vol. 376, 1104-1110, 2003.
    doi:10.1007/s00216-003-2001-3

    11. Horvath, R., et al., "Measurement of guided light mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett., Vol. 84, 4044-4046, 2004.
    doi:10.1063/1.1751610

    12. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sensors and Actuators B, Vol. 54, 3-15, 1999.
    doi:10.1016/S0925-4005(98)00321-9

    13. Sharma, A. K. and B. D. Gupta, "Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection," Optical Fiber Technol., Vol. 12, 87-100, 2006.
    doi:10.1016/j.yofte.2005.07.001

    14. Horvath, R., H. C. Pederson, and N. Skivensen, "Monitoring of living cell attachment and spreading using reverse symmetry wave-guide sensing," Appl. Phys. Letters, Vol. 86, 071101-071103, 2005.
    doi:10.1063/1.1862756

    15. Skivensen, N., R. Horvath, and H. C. Pederson, "Optimization of metal-clad waveguide sensor," Sensor and Actuators B, Vol. 106, 668-676, 2005.
    doi:10.1016/j.snb.2004.09.014

    16. Skivensen, N., R. Horvath, S. Thinggaaed, N. B. Larsen, and H. C. Pedersen, "Deep-probe metal-clad waveguide biosensors," Biosensor and Bioelectronics, Vol. 22, 1282-1288, 2007.
    doi:10.1016/j.bios.2006.05.025

    17. Ksendzov, A. and Y. Lin, "Integrated Optics ring-resonator sensor for protein detection," Opt. Lett., Vol. 30, 3344-3346, 2005.
    doi:10.1364/OL.30.003344

    18. Yalcin, A., et al., "Optical sensing of biomolecules using micro -ring resonators," IEEE J. Sel. Topics Quantum Electron, Vol. 12, 148-154, 2006.
    doi:10.1109/JSTQE.2005.863003

    19. Blanco, F. J., et al., "Microfluidic optical Integrated CMOS compatible devices for level free biochemical sensing," J. Micromech. Microeng., Vol. 16, 1006-1016, 2006.
    doi:10.1088/0960-1317/16/5/018

    20. Densmore, A., et al., "A silicon-on-insulator photonic wire based evanescent field sensor," IEEE Photonics Technology Letters, Vol. 18, No. 23, 2520-2522, 2006.
    doi:10.1109/LPT.2006.887374

    21. Veldhuis, G. J., O. Parriaux, H. J. W. Hockstra, and P. V. Lambeck, "Sensitivity enhancement in evanescent optical waveguide sensors ," J. of Lightw. Technol., Vol. 18, 677-682, 2000.
    doi:10.1109/50.842082

    22. Jourab, M., et al., "The development of a metal clad waveguide sensor for the detection of particles," Sensors and Actuators B, Vol. 90, 296-307, 2003.

    23. Jourab, M., et al., "An integrated metal clad leaky waveguide sensor for detection of bacteria," Anal. Chemistry, Vol. 77, 232-242, 2005.

    24. Taya, S. A., M. M. Shabat, and H. M. Khalil, "Enhancement of sensitivity in optical waveguide sensors using left-handed materials,", doi:10.1016/j.ijleo.2007.12.001, 2007.
    doi:10.1016/j.ijleo.2007.12.001

    25. Huang, S. Y. and S. Y. Wang, "Light propagation characteristics in various dielectric waveguide," Chinese Journal of Physics, Vol. 24, No. 2, 129-137, 1986.

    26. Fletchert, M. and G. I. Loeb, "Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces ," Applied and Environmental Microbiology, Vol. 37, No. 1, 67-72, 1979.

    27. Morell, A. and Y. H. Ahn, "Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters," Journal of Marine Research, Vol. 48, 145-175, 1990.
    doi:10.1357/002224090784984632

    28. Lavers, C. R., K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sensors and Actuators B, Vol. 69, 85-95, 2000.
    doi:10.1016/S0925-4005(00)00412-3

    29. Campbell, A. N., E. M. Kartzmark, and W. E. Falconer, "The system: Nicotine-methylethyl ketone-water," Can. J. Chem., Vol. 36, 1475-1486, 1958.
    doi:10.1139/v58-218

    30. Debenham, M. and G. D. Dew, "The refractive index of toluene in the visible spectral region," J. Phys. E: Sci. Instrum., Vol. 14, 544-545, 1981.
    doi:10.1088/0022-3735/14/5/004

    31. Rostami, A. and H. Motavali, "Asymptotic iteration method: A powerful approach for analysis of inhomogeneous dielectric slab waveguides," Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008.
    doi:10.2528/PIERB08011701

    32. Wang, Z. J. and J. F. Dong, "Analysis of guided modes in asymmetric left-handed slab waveguides," Progress In Electromagnetics Research, Vol. 62, 203-215, 2006.
    doi:10.2528/PIER06021802

    33. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
    doi:10.2528/PIER07071905