Vol. 6

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-04-17

Resonant Diffraction from a Grating on a Paramagnetic Layer with Frequency Dispersion

By Sergey B. Panin, Elena D. Vinogradova, Anatoly Poyedinchuk, and Sergey I. Tarapov
Progress In Electromagnetics Research M, Vol. 6, 185-199, 2009
doi:10.2528/PIERM09030608

Abstract

Theoretical results on the plane electromagnetic wave diffraction from a structure as a strip periodic grating on a paramagnetic layer, the permeability of which possesses negative real part in the microwave band, are obtained using analytical regularization based on the solution to the Riemann-Hilbert problem. The effect of the resonant transmission accompanied by extremely high absorption is thoroughly studied across the frequency band of the surface waves of the paramagnetic layer placed in the biasing magnetic field. This effect is caused by the surface waves of the layer excited resonantly by the plane incident wave with the diffraction grating present. The resonant frequency is electronically tuned by the biasing magnetic field.

Citation


Sergey B. Panin, Elena D. Vinogradova, Anatoly Poyedinchuk, and Sergey I. Tarapov, "Resonant Diffraction from a Grating on a Paramagnetic Layer with Frequency Dispersion," Progress In Electromagnetics Research M, Vol. 6, 185-199, 2009.
doi:10.2528/PIERM09030608
http://www.jpier.org/PIERM/pier.php?paper=09030608

References


    1. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 4, 1535-1556, 2005.
    doi:10.1109/TMTT.2005.845188

    2. Pendry, J. B., "Negative refraction," Contemporary Phys., Vol. 45, No. 3, 191-202, 2004.
    doi:10.1080/00107510410001667434

    3. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic meso structures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    4. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Tech., Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    5. Uehara, M., K. Yashiro, and S. Ohkawa, "Diffraction of plane waves from a strip grating on a ferrite substrate," Proc. Asia Pacific Microwave Conference, 177-180, 1997.
    doi:10.1109/APMC.1997.659333

    6. Panin, S. B., P. D. Smith, and A. Y. Poyedinchuk, "Elliptical to linear polarization transformation by a grating on a chiral medium ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1885-1899, 2007.

    7. Panin, S. B. and A. Y. Poyedinchuk, "Electromagnetic wave diffraction by a grating with a chiral layer," Radiophysics and Quantum Electronics, Vol. 45, No. 8, 629-639, 2002.
    doi:10.1023/A:1021781015209

    8. Melezhik, P. N., A. Y. Poyedinchuk, Y. A. Tuchkin, and N. P. Yashina, "Periodic surface of materials with single and double negative parameters: Absorption resonances," Proc. Int. Kharkiv Symp. Phys. and Engineering of Microwaves, Millimeter, and Submillimeter Waves, 311-313, MSMW'04, Kharkiv, 2004.

    9. Granet, G., M. Ney, N. Yashina, A. Poyedinchuk, and S. Panin, "Electromagnetic wave diffraction by periodic structures with metamaterials: Surface wave resonance ," Proc. 13th Int. Symp. on Antennas, 8-10, JINA'04, Nice, 2004.

    10. Kusaykin, O. P., P. N. Melezhik, A. Y. Poyedynchuk, and O. S. Troschylo, "Absorbing properties of a negative permittivity layer placed on a reflecting grating," Progress In Electromagnetics Research, Vol. 64, 135-148, 2006.
    doi:10.2528/PIER06061601

    11. Poyedinchuk, A. Y., Y. A. Tuchkin, and V. P. Shestopalov, "New numerical-analytical methods in diffraction theory," Mathematical and Computer Modelling, Vol. 32, 1026-1046, 2000.

    12. Panin, S. B., P. D. Smith, Y. A. Tuchkin, E. D. Vinogradova, and S. S. Vinogradov, "Regularization of the Dirichlet problem for Laplace's equation: Surfaces of revolution," Electromagnetics, Vol. 29, No. 1, 53-76, 2009.
    doi:10.1080/02726340802529775

    13. Agranovich, Z. S., V. A. Marchenko, and V. P. Shestopalov, "The diffraction of electromagnetic waves from plane metallic lattices," Sov. Phys. Tech. Phys., Vol. 7, 277-286, 1962.

    14. Bloch, F., "Nuclear induction," Phys. Rev., Vol. 70, 460-474, 1946.
    doi:10.1103/PhysRev.70.460

    15. Kittel, C., Introduction to Solid State Phys., Wiley & Sons, New York, 1994.

    16. Tarapov, S., T. Bagmut, A. Granovsky, V. Derkach, S. Nedukh, A. Plevako, S. Roschenko, and I. Shipkova, "Electron spin resonance properties of magnetic granular GMI-nanostructures in millimetre waveband ," Intern. Journal of Infrared and Millimeter Waves, Vol. 25, No. 11, 1581-1589, 2004.
    doi:10.1023/B:IJIM.0000047449.79715.66

    17. Kantorovich, L. V. and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, New York, 1982.

    18. Meixner, J., "The behaviour of electromagnetic field at edges," IEEE Trans. on Antennas and Propagation, Vol. 20, 442-446, 1972.
    doi:10.1109/TAP.1972.1140243

    19. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, USA, 1965.

    20. Mittra, R. and S.W. Lee, Analytical Tech. in the Theory of Guided Waves, The Macmillan Company, New York, 1971.

    21. Brovenko, A., P. N. Melezhik, A. Y. Poyedinchuk, N. P. Yashina, and G. Granet, "Surface resonances of metal stripe grating on the plane boundary of metamaterial ," Progress In Electromagnetics Research, Vol. 63, 209-222, 2006.
    doi:10.2528/PIER06052401

    22. Poyedinchuk, A. Y., Y. A. Tuchkin, N. P. Yashina, J. Chandezon, and G. Granet, "C-method: Several aspects of spectral theory of gratings," Progress In Electromagnetics Research, Vol. 59, 113-149, 2006.
    doi:10.2528/PIER05050901