Vol. 8
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-07-16
Transient Electromagnetic Fields in a Cavity with Dispersive Double Negative Medium
By
Progress In Electromagnetics Research M, Vol. 8, 51-65, 2009
Abstract
Electromagnetic fields in a cavity filled with double negative dispersive medium and bounded by a closed perfectly conducting surface is studied in the Time Domain. The sought electromagnetic fields are found in a closed form by using decomposition over cavity modes and solving in TD the differential equations for the time varying mode amplitudes. Some features of frequency response of such an electromagnetic system are presented. Waveforms of electromagnetic fields excited by a wideband pulse are considered.
Citation
Mariya S. Antyufeyeva, Alexander Butrym, and Oleg Tretyakov, "Transient Electromagnetic Fields in a Cavity with Dispersive Double Negative Medium," Progress In Electromagnetics Research M, Vol. 8, 51-65, 2009.
doi:10.2528/PIERM09062307
References

1. Veselago, V. G., "The electrodynamic of substance with simultaneously negative values of ε and μ," Usp. Sov. Phys., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188

3. Bozza, G., G. Oliveri, and M. Raffetto, "Anomalous TEM modes in guiding structures filled with double negative and double positive materials," IEEE Microwave Wireless Comp. Lett., Vol. 17, No. 1, 19-21, 2007.
doi:10.1109/LMWC.2006.887243

4. Marcos, P. and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Optic Express, Vol. 11, No. 7, 649-661, 2003.

5. Vendik, I., O. Vendik, I. Kolmakov, and M. Odit, "Modelling of isotropic double negative media for microwave applications," Opto-Electronics Review, Vol. 14, No. 3, 179-186, 2006.
doi:10.2478/s11772-006-0023-z

6. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

7. Chen, H., B. I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585

8. Engeta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Trans. Antennas Propag., Vol. 50, No. 1, 10-12, 2002.

9. Li, Y., L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental realization of a one-dimensional LHM-RHM resonator," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1522-1526, 2005.
doi:10.1109/TMTT.2005.845191

10. Hand, T., S. Cummer, and N. Engeta, "The measured electric field spatial distribution within a metamaterial subwavelength cavity resonator," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1781-1788, 2007.
doi:10.1109/TAP.2007.898630

11. Bozza, G., G. Oliveri, and M. Ra®etto, "Cavities involving metamaterials with an uncountable set of resonant frequencies," IEEE Microwave and Wireless Comp. Lett., Vol. 17, No. 8, 565-567, 2007.
doi:10.1109/LMWC.2007.901760

12. Tretyakov, O. A., "The method of modal basis," Radiotechnika i Elektronika, Vol. 31, 1071-1082, 1986.

13. Tretyakov, O. A., "Essentials of nonstationary and nonlinear electromagnetic field theory," Analytical and Numerical Methods in the Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, O. A. Tretyakov (eds.), Science House Co., Ltd., Tokyo, 1993.

14. Tretyakov, O. A. and F. Erden, "Temporal cavity oscillations caused by a wide-band waveform," Progress In Electromagnetics Research B, Vol. 6, 183-204, 2008.
doi:10.2528/PIERB08031222

15. Ango, A., Mathematics for Electric and Radio Engineers, Nauka, Moscow, Russian, 1965.