Vol. 8
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-07-28
The Multiple Antenna Induced EMF Method for the Precise Calculation of the Coupling Matrix in a Receiving Antenna Array
By
Progress In Electromagnetics Research M, Vol. 8, 103-118, 2009
Abstract
Practical antenna array designs generally require that the elements are separated by electrically short distances. The resultant mutual coupling often adversely affects the achievable performance. Various methods are available to quantify the effects of mutual coupling in arrays and improve performance through mutual coupling compensation. Mutual coupling is often described by a coupling matrix that relates the coupled and uncoupled quantities. Unfortunately, the accuracy with which the coupling matrix can be calculated is highly dependent on both the method selected and the frequency. This is a significant limitation for wideband analysis where the coupling matrix needs to be calculated accurately at all frequencies of interest. This paper introduces a novel method for the precise calculation of the coupling matrix at any frequency of interest. It is an extension of the induced EMF method to multiple array elements. The method has the important practical advantage of being independent of the numerical technique used in the analysis. Since the coupling matrix is calculated by exciting the elements in the transmission mode, the method resembles well-known network analysis. However, as outlined in the paper, there are subtle differences between the two approaches, which lead to more accurate results with the new proposed method. It is also demonstrated that antennas with arbitrary geometries and illuminations are handled accurately by the method.
Citation
Simon Henault, Yahia M. Antar, Sreeraman Rajan, Robert Inkol, and Sichun Wang, "The Multiple Antenna Induced EMF Method for the Precise Calculation of the Coupling Matrix in a Receiving Antenna Array," Progress In Electromagnetics Research M, Vol. 8, 103-118, 2009.
doi:10.2528/PIERM09062309
References

1. Hui, H. T., "Decoupling methods for the mutual coupling effect in antenna arrays: A review," Recent Patents on Engineering, Vol. 1, No. 2, 187-193, Jun. 2007.
doi:10.2174/187221207780832200

2. Gupta, I. J. and A. A. Ksienski, "Effect of mutual coupling on the performance of adaptive arrays," IEEE Trans. on Antennas and Propagation, Vol. 31, 785-791, 1983.
doi:10.1109/TAP.1983.1143128

3. Carter, P. S., "Circuit relations in radiating systems and applications to antenna problems," Proc. IRE, Vol. 20, 1004-1041, Jun. 1932.
doi:10.1109/JRPROC.1932.227723

4. Adve, R. S. and T. K. Sarkar, "Compensation for the effects of mutual coupling on direct data domain adaptive algorithms," IEEE Trans. on Antennas and Propagation, Vol. 48, 86-94, Jan. 2000.
doi:10.1109/8.827389

5. Dandekar, K. R., H. Ling, and G. Xu, "Experimental study of mutual coupling compensation in smart antenna applications," IEEE Trans. on Wireless Communications, Vol. 1, No. 3, 480-487, Jul. 2002.
doi:10.1109/TWC.2002.800546

6. Hui, H. T., "Improved compensation for the mutual coupling effect in a dipole array for direction finding," IEEE Trans. on Antennas and Propagation, Vol. 51, 2498-2503, Sept. 2003.
doi:10.1109/TAP.2003.816303

7. Hui, H. T., "A practical approach to compensate for the mutual coupling effect in an adaptive dipole array," IEEE Trans. on Antennas and Propagation, Vol. 52, 1262-1269, May 2004.
doi:10.1109/TAP.2004.827502

8. Lau, C. K. E., R. S. Adve, and T. K. Sarkar, "Minimum norm mutual coupling compensation with applications in direction of arrival estimation," IEEE Trans. on Antennas and Propagation, Vol. 52, No. 8, 2034-2041, Aug. 2004.
doi:10.1109/TAP.2004.832511

9. Schelkunoff, S. A. and H. T. Friis, Antennas Theory and Practice, John Wiley & Sons, New York, 1952.

10. Kraus, J. D., Antennas, 2 Ed., McGraw-Hill, New York, 1988.

11. FEKO-Comprehensive EM Solutions [Online]., Available: http://www.feko.co.za.

12. Henault, S., "Analysis and optimization of a compact array of wire elements for wideband direction finding in tactical electronic warfare,", M.A.Sc. Thesis, Royal Military College of Canada, Kingston, Ontario, Canada, Apr. 2008.

13. King, H. E., "Mutual impedance of unequal length antennas in echelon," IRE Trans. on Antennas and Propagation, Vol. 5, No. 3, 306-313, Jul. 1957.
doi:10.1109/TAP.1957.1144509

14. Richmond, J. H. and N. H. Geary, "Mutual impedance of nonplanar-skew sinusoidal dipoles," IEEE Trans. on Antennas and Propagation, Vol. 23, No. 3, 412-414, May 1975.
doi:10.1109/TAP.1975.1141083

15. Mitilineos, S. A., C. A. Papagianni, G. I. Verikaki, and C. N. Capsalis, "Design of switched beam planar arrays using the method of genetic algorithms," Progress In Electromagnetics Research, Vol. 46, 105-126, 2004.
doi:10.2528/PIER03080802