Vol. 11
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-09
A Wide Band Antenna for Multi-Constellation GNSS and Augmentation Systems
By
Progress In Electromagnetics Research M, Vol. 11, 65-77, 2010
Abstract
Local Area Augmentation System (LAAS) based on multi-constellation GNSS can provide improved accuracy, availability and integrity needed to support all weather category II and III precision approach landing of aircraft. In order to receive satellite signals of GNSS, an antenna working over wide frequency band and high phase center stability is preferred. Commonly used antennas like crossed dipoles, patch etc. are inherently narrow band. This paper describes the design and development of half-cardioid shaped dual arm, wide band printed circuit antenna. The antenna has low VSWR of < 3:1, a stable phase center and good right hand circularly polarized radiation patterns covering full L-band frequencies. The simulated and measured results compare well. This compact antenna can also be used on ground, ship and airborne platforms to receive signals from multiple GNSS satellites above the horizon.
Citation
Ashwani Kumar Achanta Dattatreya Sarma A. K. Mondal Kamatham Yedukondalu , "A Wide Band Antenna for Multi-Constellation GNSS and Augmentation Systems," Progress In Electromagnetics Research M, Vol. 11, 65-77, 2010.
doi:10.2528/PIERM09100304
http://www.jpier.org/PIERM/pier.php?paper=09100304
References

1. Braff, R., "Description of the FAA's local area augmentation system (LAAS)," Navigation, Journal of the Institute of Navigation, Vol. 44, No. 4, 411-423, Winter 1997--1998.

2. Kovar, P., P. Puricer, P. Kacmarik, and F. Vejrazka, Augmentation methods for GNSS integrity and precision enhancement in difficult environment, Proceedings of TimeNav 07, ENC-GNSS, European Navigation Conference, 107-114, The Printing House Inc., Stoughton, 2007.

3. Rizos, C., et al., New GNSS developments and their impact on providers and users spatial information, (http://www.gmat.unsw.edu.au/snap/publications/rizosetal 2005a.pdf).

4. Constantinescu, A. and R. J. Landry, GPS/Galileo/GLONASS hybrid satellite constellation simulator --- GPS constellation validation analysis, The Institute of Navigation 61st Annual Meeting, 733-737, Cambridge, MA, USA, 2005.

5. Zhang, Y. and H. T. Hui, "A printed hemispherical helical antenna for GPS receivers," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 1, 10-12, Jan. 2005.
doi:10.1109/LMWC.2004.840953

6. Baik, J. W., K. J. Lee, W. S. Yoon, T. H. Lee, and Y. S. Kim, "Circularly polarised printed crossed dipole antennas with broadband axial ratio," Electronics Letters, Vol. 44, No. 13, 785-786, Jun. 19, 2008.
doi:10.1049/el:20080794

7. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Peter Perigrinus Ltd., London, 1989.

8. Padros, N., et al., "Comparative study of high-performance GPS receiving antenna designs," IEEE Trans. Antennas and Propagation, Vol. 45, No. 4, 698-706, Apr. 1997.
doi:10.1109/8.564096

9. Pozar, D. M. and S. M. Du®y, "A dual-band circularly polarised aperture-coupled stacked microstrip antenna for global positioning system," IEEE Trans. Antennas and Propagation, Vol. 45, No. 11, 1618-1625, Nov. 1997.
doi:10.1109/8.650073

10. Boccia, L., et al., A high performance dual frequency microstrip antenna for global positioning system, IEEE Antenna and Propagation Soc. Int. Symposium, Vol. 4, 66-69, 2001.

11. Rao, B. R., et al., "Triple band GPS trap loaded inverted L antenna array," Microwave and Optical Technology Letters, Vol. 38, No. 1, 25-37, 2003.
doi:10.1002/mop.10960

12. Yang, F. and Y. Rahamat-Samii, A single layer dual band circularly polarized microstrip antenna for GPS applications, IEEE Antennas and Propagation Society International Symposium, Vol. 4, 720-723, Jun. 2002.

13. Zhou, Y., C.-C. Chen, and J. L. Volakis, Proximity-coupled stacked patch antenna for tri-band GPS applications, IEEE Antennas and Propagation Society International Symposium 2006, 2683-2686, Jul. 9--14, 2006.

14. DuHamel, R. H. and D. E. Isbell, "Broadband logarithmically periodic antenna structures," IRE National Convention Record, No. 1, 1957.

15. Rumsey, V. H., "Frequency-independent antennas," IRE National Convention Record, Vol. 5, Part 1, 114--118, 1957.

16. Grewal, B. S., Higher Engineering Mathematics, 36th Ed., Khanna Publications, New Delhi, 1998.

17. Dyson, J. D., "The equiangular spiral antenna," IRE Transactions on Antennas and Propagation, 181-187, 1959.
doi:10.1109/TAP.1959.1144653

18. Thaysen, J., et al., Numerical and experimental investigation of a coplanar waveguide-fed spiral antenna, IEEE 24th QMW Antenna Symposium, 13-16, 2000.

19., High-frequency Structure Simulator (HFSS V10.1) software from Ansoft Corp. (Pittsburgh, PA).