Vol. 9

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-11-28

Band Structure, Reflection Properties and Abnormal Behaviour of One-Dimensional Plasma Photonic Crystals

By Vipin Kumar, Khundrakpam Saratchandra Singh, and Sant Ojha
Progress In Electromagnetics Research M, Vol. 9, 227-241, 2009
doi:10.2528/PIERM09101701

Abstract

In this paper, some studies on one-dimensional plasma photonic crystal (PPC) containing alternate layers of dielectric and micro-plasma have been presented. The band structures, reflectivity, group velocities and effective group index of such photonic crystals have been studied. For the purpose of computation, we have used transfer matrix method. In this study, we take two PPC structures named PPC1 and PPC2. In PPC1, we take SiO2 as the material for the dielectric layers whereas in PPC2, we take TiO2 as the material for the dielectric layers. It is found that the forbidden band gap(s) can be increased by increasing the thickness of plasma layers. The ranges of 100% reflection is found to be in the higher normalized frequency region in the case of PPC1 whereas in PPC2 the ranges of 100% reflection is found in the lower normalized frequency region. It is also found that for a certain normalized frequency, the group velocity becomes negative in both PPCs. However, the range of normalized frequency for which the group velocity is negative is larger in the case PPC1 than in PPC2. This abnormal behaviour of group velocities of both PPCs results in superluminal propagation (speed of EM wave in PPC greater than speed of light) of electromagnetic waves. Also, because of the abnormal behaviour of group velocity, effective group index becomes negative and possesses ultra high values. uch structures may be considered as a flip flop as there is positive and negative symmetry of effective group velocity. Also, PPC2 exhibits superluminal propagation for wider range of normalized frequency where there is superluminal propagation inside the structure as compared to that of PPC1.

Citation


Vipin Kumar, Khundrakpam Saratchandra Singh, and Sant Ojha, "Band Structure, Reflection Properties and Abnormal Behaviour of One-Dimensional Plasma Photonic Crystals," Progress In Electromagnetics Research M, Vol. 9, 227-241, 2009.
doi:10.2528/PIERM09101701
http://www.jpier.org/PIERM/pier.php?paper=09101701

References


    1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
    doi:10.1103/PhysRevLett.58.2059

    2. Pendry, J. B., "Photonic band structures," J. Mod Opt., Vol. 41, 209, 1994.
    doi:10.1080/09500349414550281

    3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, NJ, 1995.

    4. Jonopoulos, J. D., P. Villeneuve, and S. Fan, "Photonic crystals: Putting a new twist on light," Nature, Vol. 386, 143-149, 1997.
    doi:10.1038/386143a0

    5. Brooks, D. and S. Ruschin, "Integrated electrooptic multielectrode tunable filter," J. Lightwave Technol., Vol. 13, 1508-1513, 1995.
    doi:10.1109/50.400719

    6. John, S., "Strong localization of photon in certain disordered dielectric superlattice," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
    doi:10.1103/PhysRevLett.58.2486

    7. Russell, P. S. J., S. Tredwell, and P. J. Roberts, "Full photonic bandgapes and spontaneous emission control in 1D multilayer dielectric structures," Opt. Commun., Vol. 160, 66-71, 1999.
    doi:10.1016/S0030-4018(98)00659-2

    8. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A: Mater. Sci. Process., Vol. 68, 25-28, 1999.
    doi:10.1007/s003390050849

    9. Shadrivov, I. V., A. A. Sukhorukov, and Y. S. Kivshar, "Complete band gaps in one dimensional left handed periodic structure," Phys. Rev. Lett., Vol. 95, 193903-4, 2005.
    doi:10.1103/PhysRevLett.95.193903

    10. Wu, R. X., P. Chen, F. Yang, and T. E. Zhao, "Wave polarization and left-handed materials in metallic magnetic thin films," PIERS Online, Vol. 1, No. 4, 459-463, 2005.
    doi:10.2529/PIERS041225091131

    11. Shu, W. and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," Progress In Electromagnetics Research, Vol. 65, 103-123, 2006.
    doi:10.2528/PIER06081601

    12. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
    doi:10.2528/PIER07010501

    13. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystals with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
    doi:10.2528/PIER06061602

    14. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fluorescence films," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.
    doi:10.2528/PIER07050202

    15. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
    doi:10.2528/PIERB07102903

    16. Banerjee, A., S. K. Awasthi, U. Malaviya, and S. P. Ojha, "Design of a nano-layered tunable optical filter," J. of Modern Optics, Vol. 53, 1739-1752, 2006.
    doi:10.1080/09500340600590547

    17. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
    doi:10.2528/PIER05091701

    18. Chen, K. M., A. W. Sparks, H.-C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method," Appl. Phys. Lett., Vol. 75, 3805-3807, 1999.
    doi:10.1063/1.125462

    19. Brillouin, L., Wave Propagation and Group Velocity, Academic, New York, 1960.

    20. Garrett, C. G. B. and D. E. McCumber, "Propagation of Gaussian pulse through an Anomalous Dispersive Medium," Phys. Rev. A, Vol. 1, 305-313, 1970.
    doi:10.1103/PhysRevA.1.305

    21. Japha, Y. and G. Kurizki, "Superluminal delays of coherent pulses in nondessipative media: A universal mechanism," Phys. Rev. A, Vol. 53, 586-590, 1996.
    doi:10.1103/PhysRevA.53.586

    22. Romero-Rochin, V., R. P. Duarte-Zamorano, S. Nilsen-Hofseth, and R. G. Barrera, "Superluminal transmission of lights through optical opaque barriers," Phys. Rev. E, Vol. 63, 027601-027604, 2001.
    doi:10.1103/PhysRevE.63.027601

    23. Bolda, E. L. and R. Y. Chiao, "Two theorems for the group velocity in dispersive media," Phys. Rev. A, Vol. 48, 3890-3894, 1993.
    doi:10.1103/PhysRevA.48.3890

    24. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekh1, Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    25. Ramakrishna, S. A., "Physics of negative refractive index materials," Rep. Prog. Phys., Vol. 68, 449-521, 2005.
    doi:10.1088/0034-4885/68/2/R06

    26. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    27. Ojha, S. P. and S. K. Srivastava, "Group velocity, negative and ultra-high index of refraction in photonic band gap materials," Microwave Opt. Technol. Lett., Vol. 42, 82-86, 2004.
    doi:10.1002/mop.20216

    28. Ojha, S. P., K. B. Thapa, and S. K. Singh, "Superluminal propagation in plasma Photonic band gap materials," Optik --- International Journal for Light and Electron Optics, Vol. 119, No. 2, 81-85, 2008.
    doi:10.1016/j.ijleo.2006.06.014

    29. Pandey, G. N., K. B. Thapa, S. K. Srivastava, and S. P. Ojha, "Band structures and abnormal behaviour of one dimensional photonic crystal containing negative index materials," Progress In Electromagnetics Research M, Vol. 2, 15-36, 2008.
    doi:10.2528/PIERM08021501

    30. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, 89-92, 2004.
    doi:10.1585/jspf.80.89

    31. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.

    32. Sakoda, K., Optical Properties of Photonic Crystals, Springer, Germany, 2001.