Vol. 9

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Band Structure, Reflection Properties and Abnormal Behaviour of One-Dimensional Plasma Photonic Crystals

By Vipin Kumar, Khundrakpam Saratchandra Singh, and Sant Ojha
Progress In Electromagnetics Research M, Vol. 9, 227-241, 2009


In this paper, some studies on one-dimensional plasma photonic crystal (PPC) containing alternate layers of dielectric and micro-plasma have been presented. The band structures, reflectivity, group velocities and effective group index of such photonic crystals have been studied. For the purpose of computation, we have used transfer matrix method. In this study, we take two PPC structures named PPC1 and PPC2. In PPC1, we take SiO2 as the material for the dielectric layers whereas in PPC2, we take TiO2 as the material for the dielectric layers. It is found that the forbidden band gap(s) can be increased by increasing the thickness of plasma layers. The ranges of 100% reflection is found to be in the higher normalized frequency region in the case of PPC1 whereas in PPC2 the ranges of 100% reflection is found in the lower normalized frequency region. It is also found that for a certain normalized frequency, the group velocity becomes negative in both PPCs. However, the range of normalized frequency for which the group velocity is negative is larger in the case PPC1 than in PPC2. This abnormal behaviour of group velocities of both PPCs results in superluminal propagation (speed of EM wave in PPC greater than speed of light) of electromagnetic waves. Also, because of the abnormal behaviour of group velocity, effective group index becomes negative and possesses ultra high values. uch structures may be considered as a flip flop as there is positive and negative symmetry of effective group velocity. Also, PPC2 exhibits superluminal propagation for wider range of normalized frequency where there is superluminal propagation inside the structure as compared to that of PPC1.


Vipin Kumar, Khundrakpam Saratchandra Singh, and Sant Ojha, "Band Structure, Reflection Properties and Abnormal Behaviour of One-Dimensional Plasma Photonic Crystals," Progress In Electromagnetics Research M, Vol. 9, 227-241, 2009.


    1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.

    2. Pendry, J. B., "Photonic band structures," J. Mod Opt., Vol. 41, 209, 1994.

    3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, NJ, 1995.

    4. Jonopoulos, J. D., P. Villeneuve, and S. Fan, "Photonic crystals: Putting a new twist on light," Nature, Vol. 386, 143-149, 1997.

    5. Brooks, D. and S. Ruschin, "Integrated electrooptic multielectrode tunable filter," J. Lightwave Technol., Vol. 13, 1508-1513, 1995.

    6. John, S., "Strong localization of photon in certain disordered dielectric superlattice," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.

    7. Russell, P. S. J., S. Tredwell, and P. J. Roberts, "Full photonic bandgapes and spontaneous emission control in 1D multilayer dielectric structures," Opt. Commun., Vol. 160, 66-71, 1999.

    8. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A: Mater. Sci. Process., Vol. 68, 25-28, 1999.

    9. Shadrivov, I. V., A. A. Sukhorukov, and Y. S. Kivshar, "Complete band gaps in one dimensional left handed periodic structure," Phys. Rev. Lett., Vol. 95, 193903-4, 2005.

    10. Wu, R. X., P. Chen, F. Yang, and T. E. Zhao, "Wave polarization and left-handed materials in metallic magnetic thin films," PIERS Online, Vol. 1, No. 4, 459-463, 2005.

    11. Shu, W. and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," Progress In Electromagnetics Research, Vol. 65, 103-123, 2006.

    12. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.

    13. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystals with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.

    14. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fluorescence films," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.

    15. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.

    16. Banerjee, A., S. K. Awasthi, U. Malaviya, and S. P. Ojha, "Design of a nano-layered tunable optical filter," J. of Modern Optics, Vol. 53, 1739-1752, 2006.

    17. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.

    18. Chen, K. M., A. W. Sparks, H.-C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method," Appl. Phys. Lett., Vol. 75, 3805-3807, 1999.

    19. Brillouin, L., Wave Propagation and Group Velocity, Academic, New York, 1960.

    20. Garrett, C. G. B. and D. E. McCumber, "Propagation of Gaussian pulse through an Anomalous Dispersive Medium," Phys. Rev. A, Vol. 1, 305-313, 1970.

    21. Japha, Y. and G. Kurizki, "Superluminal delays of coherent pulses in nondessipative media: A universal mechanism," Phys. Rev. A, Vol. 53, 586-590, 1996.

    22. Romero-Rochin, V., R. P. Duarte-Zamorano, S. Nilsen-Hofseth, and R. G. Barrera, "Superluminal transmission of lights through optical opaque barriers," Phys. Rev. E, Vol. 63, 027601-027604, 2001.

    23. Bolda, E. L. and R. Y. Chiao, "Two theorems for the group velocity in dispersive media," Phys. Rev. A, Vol. 48, 3890-3894, 1993.

    24. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekh1, Vol. 10, 509-514, 1968.

    25. Ramakrishna, S. A., "Physics of negative refractive index materials," Rep. Prog. Phys., Vol. 68, 449-521, 2005.

    26. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.

    27. Ojha, S. P. and S. K. Srivastava, "Group velocity, negative and ultra-high index of refraction in photonic band gap materials," Microwave Opt. Technol. Lett., Vol. 42, 82-86, 2004.

    28. Ojha, S. P., K. B. Thapa, and S. K. Singh, "Superluminal propagation in plasma Photonic band gap materials," Optik --- International Journal for Light and Electron Optics, Vol. 119, No. 2, 81-85, 2008.

    29. Pandey, G. N., K. B. Thapa, S. K. Srivastava, and S. P. Ojha, "Band structures and abnormal behaviour of one dimensional photonic crystal containing negative index materials," Progress In Electromagnetics Research M, Vol. 2, 15-36, 2008.

    30. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, 89-92, 2004.

    31. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.

    32. Sakoda, K., Optical Properties of Photonic Crystals, Springer, Germany, 2001.