Vol. 10

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-12-16

Accurate Synthesis Formulas Obtained by Using a Differential Evolution Algorithm for Conductor-Backed Coplanar Waveguides

By Sabri Kaya, Kerim Guney, Celal Yildiz, and Mustafa Turkmen
Progress In Electromagnetics Research M, Vol. 10, 71-81, 2009
doi:10.2528/PIERM09111907

Abstract

In this paper, accurate synthesis formulas obtained by using a differential evolution (DE) algorithm for conductor-backed coplanar waveguides (CBCPWs) are presented. The synthesis formulas are useful to microwave engineers for accurately calculating the physical dimensions of CBCPWs. The results of the synthesis formulas are compared with the theoretical and experimental results available in the literature. A full-wave electromagnetic simulator IE3D and experimental results are obtained in this work. The average percentage error of the synthesis formulas obtained by using DE algorithm is computed as 0.67% for 1086 CBCPW samples having different electrical parameters and physical dimensions, as compared with the results of quasi-static analysis.

Citation


Sabri Kaya, Kerim Guney, Celal Yildiz, and Mustafa Turkmen, "Accurate Synthesis Formulas Obtained by Using a Differential Evolution Algorithm for Conductor-Backed Coplanar Waveguides," Progress In Electromagnetics Research M, Vol. 10, 71-81, 2009.
doi:10.2528/PIERM09111907
http://www.jpier.org/PIERM/pier.php?paper=09111907

References


    1. Nguyen, C., Analysis Methods for RF, Microwave, and Millimeter-wave Planar Transmission Line Structures, John Wiley and Sons, 2000.
    doi:10.1002/0471200670

    2. Simons, R. N., Coplanar Waveguide Circuits, Components and Systems, John Wiley and Sons, 2001.
    doi:10.1002/0471224758

    3. Shih, Y. C., "Broadband characterization of conductor-backed coplanar waveguide using accurate on-wafer measurement techniques," Microwave Journal, Vol. 34, 95-105, 1991.

    4. Shih, Y. C. and T. Itoh, "Analysis of conductor-backed coplanar waveguide," Electronic Letters, Vol. 18, 538-540, 1982.
    doi:10.1049/el:19820365

    5. Ghione, G. and C. U. Naldi, "Parameters of coplanar waveguides with lower ground plane," Electronic Letters, Vol. 19, 734-735, 1983.
    doi:10.1049/el:19830500

    6. Ghione, G. and C. U. Naldi, "Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, 260-267, 1987.
    doi:10.1109/TMTT.1987.1133637

    7. Cheng, K. K. M. and J. K. A. Everard, "A new technique for the quasi-TEM analysis of conductor-backed coplanar waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 1589-1592, 1993.
    doi:10.1109/22.245682

    8. Tien, C. C., C. K. C. Tzuang, S. T. Peng, and C. C. Chang, "Transmission characteristics of finite-width conductor-backed coplanar waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 9, 1616-1624, 1993.
    doi:10.1109/22.245687

    9. Neto, A. G., C. S. D. Rocha, D. Bajon, and H. Baudrand, "Analysis of the conductor-backed coplanar waveguide by an alternative formulation of the transverse resonance technique," SBMO/IEEE MTT-S Int., 851-855, 1995.
    doi:10.1109/SBMOMO.1995.509726

    10. Huang, J. F. and C. W. Kuo, "More investigations of leakage and nonleakage conductor-backed coplanar waveguide," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 257-261, 1998.
    doi:10.1109/15.709424

    11. Hotta, M., Y. Qian, and T. Itoh, "Efficient FDTD analysis of conductor-backed CPW's with reduced leakage loss," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 1585-1587, 1999.
    doi:10.1109/22.780412

    12. Yildiz, C. and M. Turkmen, "Synthesis formulas for conductor-backed coplanar waveguide," Microwave and Optical Technology Letters, Vol. 50, No. 4, 1115-1117, 2008.
    doi:10.1002/mop.23304

    13. Price, K., "Differential evolution: A fast and simple numerical optimizer," IEEE North American Fuzzy Info. Process. Conf., 524-527, Berkeley, CA, 1996.

    14. Storn, R. and K. Price, "Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, 341-359, 1997.
    doi:10.1023/A:1008202821328

    15. Michalski, K. A., "Electromagnetic imaging of circular cylindrical conductors and tunnels using a differential evolution algorithm," Microwave and Optical Technology Letters, Vol. 27, 330-334, 2000.
    doi:10.1002/1098-2760(20001205)27:5<330::AID-MOP13>3.0.CO;2-H

    16. Qing, A., "Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy," IEEE Transactions on Antennas and Propagation, Vol. 51, 1251-1262, 2003.
    doi:10.1109/TAP.2003.811492

    17. Luo, X. F., P. T. Teo, A. Qing, and C. K. Lee, "Design of double-square-loop frequency-selective surfaces using differential evolution strategy coupled with equivalent-circuit model," Microwave and Optical Technology Letters, Vol. 44, 159-162, 2005.
    doi:10.1002/mop.20575

    18. Luo, X. F., A. Qing, and C. K. Lee, "Application of the differential-evolution strategy to the design of frequency-selective surfaces," Int. J. RF and Microwave CAE, Vol. 15, 173-180, 2005.

    19. Yildiz, C., A. Akdagli, and M. Turkmen, "Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar strip lines," Microwave and Optical Technology Letters, Vol. 48, 1133-1137, 2006.
    doi:10.1002/mop.21559

    20. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "New and accurate synthesis formulas for multilayer homogeneous coupling structure," Microwave and Optical Technology Letters, Vol. 49, 2486-2489, 2007.
    doi:10.1002/mop.22743

    21. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Synthesis formulas for multilayer homogeneous coupling structure with ground shielding," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2073-2084, 2007.
    doi:10.1163/156939307783152786

    22. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Synthesis formulas for microcoplanar striplines," Microwave and Optical Technology Letters, Vol. 50, 2884-2888, 2008.
    doi:10.1002/mop.23823

    23. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "New and accurate synthesis formulas for asymmetric coplanar stripline with an infinitely wide strip," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 50, 109-116, 2009.
    doi:10.1007/s10762-008-9443-9

    24. Zeland Software Inc., IE3D, Version 12.12, www.zeland.com, 2007.