Vol. 11
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-01-18
Gaussian Beam Modeling of SAR Enhancement in Paraxial and Non-Paraxial Regions of Biological Tissues
By
Progress In Electromagnetics Research M, Vol. 11, 1-12, 2010
Abstract
A polarized 3D-electromagnetic wave propagating from an aperture source into a lossy medium can be modeled by an astigmatic Gaussian beam model (GBM) of complex source coefficients that characterize a radiating antenna uniquely. The source coefficients are determined numerically from phantom experiments, and then used in simulations of specific absorption rates (SAR), in both homogeneous and layered biological media, resulting in good agreement with experimental data. This paper shows that for an x-polarized E-field the GBM simulations of SAR enhancement or focus in the axial, z-directed, paraxial region are accurate, but approximate in the transverse, y-directed, non-paraxial regions due to a focal shift.
Citation
Mikaya L.D. Lumori , "Gaussian Beam Modeling of SAR Enhancement in Paraxial and Non-Paraxial Regions of Biological Tissues," Progress In Electromagnetics Research M, Vol. 11, 1-12, 2010.
doi:10.2528/PIERM09121808
http://www.jpier.org/PIERM/pier.php?paper=09121808
References

1. Andersen, J. B., "Electromagnetic power deposition: Inhomogeneous media, applicators and phased arrays ," Physics and Technology of Hyperthermia, S. B. Field and C. Franconi (eds.), 159-188, Dordrecht, Martinus Nijho®, The Netherlands, 1987.

2. Lumori, M. L. D., Microwave power deposition in bounded and inhomogeneous lossy media, Ph.D. Dissertation, Department of Electrical and Computer Engineering, University of Arizona, Tucson, May 1988.

3. Lumori, M. L. D., "Experimentally based modeling of field sources for three-dimensional computation of SAR in electromagnetic hyperthermia and treatment planning ," IEEE Trans. Microwave Theory Tech., Vol. 48, 1522-1530, 2000.
doi:10.1109/22.869003

4. Lumori, M. L. D., J. B. Anderson, M. K. Gopal, and T. C. Cetas, "Gaussian beam representation of aperture fields in layered, lossy media: Simulation and experiment," IEEE Trans. Microwave Theory Tech., Vol. 38, 1623-1630, 1990.
doi:10.1109/22.60008

5. Lumori, M. L. D., J. W. Hand, M. K. Gopal, and T. C. Cetas, "Use of Gaussian beam model in predicting SAR distributions from current sheet applicators ," Phys. Med. Biol., Vol. 35, 387-397, UK, 1990.
doi:10.1088/0031-9155/35/3/007

6. Gopal, M. K., J. W. Hand, M. L. D. Lumori, S. Alkhairi, K. D. Paulsen, and T. C. Cetas, "Current sheet applicator arrays for superficial hyperthermia of chestwall lesions," Int. J. Hyperthermia, Vol. 8, 227-240, 1992.
doi:10.3109/02656739209021778

7. Prior, M. V., M. L. D. Lumori, J. W. Hand, G. Lamaitre, C. J. Schneider, and J. D. P. Van Dijk, "The use of current sheet applicator arrays for superficial hyperthermia: Incoherent versus coherent operation," IEEE Trans. Biomed. Eng., Vol. 42, 694-698, 1995.
doi:10.1109/10.391168

8. Deschamps, G. A., "Gaussian beam as a bundle of complex rays," Electron. Lett., Vol. 7, No. 23, 684-685, Nov. 1971.
doi:10.1049/el:19710467

9. Deschamps, G. A., "Ray techniques in electromagnetic," Proc. IEEE, Vol. 60, 1022-1035, Sep. 1975.

10. Kogelnik, H., "On the propagation of Gaussian beams of light through lenslike media including those with loss or gain variation ," App. Opt., Vol. 4, No. 12, 1562-1569, 1965.
doi:10.1364/AO.4.001562

11. Kogelnik, H. and T. Li, "Laser beams and resonators," Proc. IEEE, Vol. 5, No. 10, 1550-1567, 1966.

12. Arnaud, J. A. and H. Kogelnik, "Gaussian light beams with general astigmatism," Appl. Opt., Vol. 8, No. 8, 1687-1693, 1969.
doi:10.1364/AO.8.001687

13. Lovisolo, G. A., et al., "A multifrequency water-filled waveguide applicator: Thermal dosimetry in vivo," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 8, 893-896, 1982.
doi:10.1109/TMTT.1984.1132799

14. Johnson, R. H., "New type of compact electromagnetic applicator for hyperthermia in the treatment of cancer ," Electron. Lett., Vol. 22, 591-593, 1986.
doi:10.1049/el:19860402

15. Johnson, R. H., A. W. Preece, J. W. Hand, and J. R. James, "A new type of lightweight low-frequency electromagnetic hyperthermia applicator," IEEE Trans. Microwave Theory Tech., Vol. 35, 1317-1321, 1987.
doi:10.1109/TMTT.1987.1133854

16. Wait, J. R. and M. L. D. Lumori, "Focused heating in cylindrical targets, Part II," IEEE Trans. Microwave Theory Tech., Vol. 134, 357-359, 1986.
doi:10.1109/TMTT.1986.1133345

17. Lumori, M. L. D., J. R. Wait, and T. C. Cetas, "Power deposition and focusing in a lossy cylinder by a concentric phased array," Radio Science, Vol. 24, 433-442, 1989.
doi:10.1029/RS024i004p00433

18. Stogryn, A., "Equations for calculating the dielectric constant of saline water ," IEEE Trans. Microwave Theory Tech., Vol. 19, No. 8, 733-736, 1971.
doi:10.1109/TMTT.1971.1127617

19. Ebrahimi-Ganjeh, M. A. and A. R. Attari, "Study of water bolus effect on SAR penetration depth and effective field size for local hyperthermia," Progress In Electromagnetics Research B, Vol. 4, 273-283, 2008.
doi:10.2528/PIERB08011403

20. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens Progress In Electromagnetics Research ,", Vol. 98, 389-405, 2009.