Vol. 12
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-04-19
Shift-Operator FDTD Method for Anisotropic Plasma in Kdb Coordinates System
By
Progress In Electromagnetics Research M, Vol. 12, 51-65, 2010
Abstract
Electromagnetic (EM) problem model for anisotropic plasma in kDB coordinates system is set up. And the model includes almost all the respects of EM-problems for anisotropic plasma. Based on shift-operator finite difference time-domain (SO-FDTD) method, Maxwell equations and EM-field constitutive equations are solved and discrete difference scheme of each EM-field component is obtained. Then the propagation characteristics of eigen wave are expressed by the two components of electric displacement vector as well. Lastly, three typical examples are calculated by SO-FDTD method, and the results verify the effectiveness and exactness of SO-FDTD method in kDB coordinates system.
Citation
Lai-Xuan Ma Hou Zhang Hong-Xing Zheng Chen-Xin Zhang , "Shift-Operator FDTD Method for Anisotropic Plasma in Kdb Coordinates System," Progress In Electromagnetics Research M, Vol. 12, 51-65, 2010.
doi:10.2528/PIERM09122901
http://www.jpier.org/PIERM/pier.php?paper=09122901
References

1. Wang, Y.-P., D.-Z. Chen, and P.-C. Liu, Engineering Electrodynamics, Northwest College of Communication Engineering Press, Xi'an, 1985 (in Chinese).

2. Kung, K.-A., Electromagnetic Wave Theory, Electronics Industry Press, Beijing, 2003 (in Chinese).

3. Bi, D.-X., Electromagnetic Field Theory, Electronics Industry Press, Beijing, 1985 (in Chinese).

4. Kyriacou, G. A., "Wiener-hope analysis of planar canonical structures loaded with longitudinally magnetized plasma biased normally to the extra-ordinary wave propagation," Progress In Electromagnetics Research B, Vol. 5, 1-34, 2008.
doi:10.2528/PIERB07121907

5. Guo, H. P. and X. G. Liu, "Preliminary discussion on the relationship between EM wave propagation characteristics and medium parameters in anisotropic medium," Journal of Systems Engineering and Electronics, Vol. 13, No. 4, 1-7, 2002.

6. Wei, B. and D.-B. Ge, "Permittivity reconstruction of mono-axial anisotropic medium," Journal of Xidian University, Vol. 29, No. 5, 607-609, 2002 (in Chinese).

7. Fu, Z., H. X. Zhou, and K. Q. Zhang, "Electromagnetic wave propagation in chiral plasma and chiral ferrite," Proceedings of SPIE, Vol. 4905, 381-389, 2002.
doi:10.1117/12.481028

8. Ge, D.-B., Y.-L. Wu, and X.-Q. Zhu, "Shift operator method applied for dispersive medium in FDTD analysis," Chinese Journal of Radio Science, Vol. 18, No. 4, 359-363, 2003 (in Chinese).

9. Yang, H.-W., et al., "SO-FDTD analysis of anisotropic magnetized plasma of plasma," Acta Physica Sinica, Vol. 56, No. 3, 1443-1446, 2007 (in Chinese).

10. Yang, H. W., R. S. Chen, and Y. C. Zhou, "SO-FDTD analysis on magnetized plasma," International Journal of Infrared and Millimeter Waves, Vol. 28, No. 7, 751-758, 2007.
doi:10.1007/s10762-007-9246-4

11. Wang, F., D.-B. Ge, and B. Wei, "SO-FDTD method for computation of reflection and transmission coefficients for magnetized plasma layer," Chinese Journal of Radio Science, Vol. 23, No. 4, 704-707, 2008 (in Chinese).

12. Qian, Z. H. and R. S. Chen, "FDTD analysis of magnetized plasma with arbitrary magnetic declination," International Journal of Infrared and Millimeter Waves, Vol. 28, No. 1, 157-167, 2007.
doi:10.1007/s10762-006-9185-5

13. Zheng, H.-X. and K. W. Leung, "An e±cient method to reduce the numerical dispersion in the ADI-FDTD," IEEE Trans. on Microwave Theory and Techniques, Vol. 53, No. 7, 2295-2301, 2005.
doi:10.1109/TMTT.2005.850441

14. Chew, W. C., The Field and Wave in Inhomogeneous Medium, Electronics Industry Press, Pecking, 1992 (in Chinese).

15. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, 2nd Ed., Pergamon, New York, 1970.

16. Hunsberger, F., R. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media-I: Magnetized plasma," IEEE Trans. on Antennas and Propagation, Vol. 40, No. 12, 1489-1495, 1992.
doi:10.1109/8.204739

17. Ye, Q. and F. Lu, "The anisotropic cell model in the colloidal plasmas," Progress In Electromagnetics Research, Vol. 100, 381-396, 2010.
doi:10.2528/PIER09112401