Vol. 11
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-10
Finite-Difference Frequency-Domain Analysis of Linear Arrays of Dielectric Cylinders with the Adaptive Basis Functions/Diagonal Moment Matrix Technique
By
Progress In Electromagnetics Research M, Vol. 11, 89-98, 2010
Abstract
The finite-difference frequency-domain (FDFD) method with the adaptive basis functions/diagonal moment matrix (ABF/DMM) technique is proposed in this paper for finite periodic linear arrays of inhomogeneous dielectric cylinders, in which the versatility of the FDFD method and the high efficiency of the ABF/DMM technique are combined. The method in this paper and the classical full-domain FDFD method are compared in the given numerical examples. The results obtained by the two methods respectively are in good agreement, but the computational times are largely reduced in the method in this paper.
Citation
Gang Zheng Bing-Zhong Wang Xiao Ding , "Finite-Difference Frequency-Domain Analysis of Linear Arrays of Dielectric Cylinders with the Adaptive Basis Functions/Diagonal Moment Matrix Technique," Progress In Electromagnetics Research M, Vol. 11, 89-98, 2010.
doi:10.2528/PIERM10011003
http://www.jpier.org/PIERM/pier.php?paper=10011003
References

1. Rappaport, C. M. and B. J. McCartin, "FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes," IEEE Trans. Antennas Propag., Vol. 39, No. 3, 345-349, March 1991.
doi:10.1109/8.76332

2. Norgren, M., "A hybrid FDFD-BIE approach to two-dimensional scattering from an inhomogeneous biisotropic cylinder," Progress In Electromagnetics Research, Vol. 38, 1-27, 2002.
doi:10.2528/PIER02092503

3. Wang, B.-Z., X. Wang, and W. Shao, "2D full-wave finite-difference frequency-domain method for lossy metal waveguide," Microwave and Optical Technology Letters, Vol. 42, No. 2, 158-161, July 2004.
doi:10.1002/mop.20238

4. Zhao, W., H. W. Deng, and Y. J. Zhao, "Application of 4-compnent compact 2-D FDFD method in analysis of lossy circular metal waveguide," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2297-2308, December 2008.
doi:10.1163/156939308787543930

5. Zheng, G. and B.-Z. Wang, "Analysis of scattering from multiple objects by the finite-difference frequency-domain method with an iteration-free multiregion technique," IEEE Antennas and Wireless Propag. Letters, Vol. 8, 794-797, 2009.
doi:10.1109/LAWP.2009.2025614

6. Zheng, G., B.-Z. Wang, H. Li, X.-F. Liu, and S. Ding, "Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entire-domain basis functions and ," Progress In Electromagnetics Reserch, Vol. 99, 453-463, 2009.
doi:10.2528/PIER09111502

7. Talflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, New York, 2000.

8. Waller, M. L. and S. M. Rao, "Application of adaptive basis functions for a diagonal moment matrix solution of arbitrarily shaped three-dimensional conducting body problems," IEEE Trans. Antennas Propag., Vol. 50, No. 10, 1445-1452, October 2002.
doi:10.1109/TAP.2002.802095

9. Eshrah, I. A. and A. A. Kishk, "Analysis of linear arrays usin the adaptive basis functions/diagonal moment matrix technique," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1121-1125, March 2005.
doi:10.1109/TAP.2004.842629