Vol. 11
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-15
Electromagnetic Band Gap Structures Incorporate with Dual Band Microstrip Antenna Array
By
Progress In Electromagnetics Research M, Vol. 11, 111-122, 2010
Abstract
A Dual band Microstrip Antenna Arrays (DbMSAA) incorporated with Mushroom Electromagnetic band Gap (MEBG) and modified Minkowski Electromagnetic Band Gap structures to further improve its radiation characteristics is reported in this work. The two different types of EBG structures work like a Band Rejecter (BR), separating the branch of feed line feeding two different groups of patch antenna arrays operating at 2.4 GHz and 5.8 GHz, thus making them operate individually at their particular frequencies, simultaneously. Initially, the possibilities of having a uniform and controlled radiation patterns are quite complicated to achieve due to the single port feeding technique used and developments of grating lobes at the higher band frequency, but, through the incorporation of the EBG structures, the problems could be solved immediately. The antenna's performance is improved where the grating lobes at 5.8 GHz are diminished, and the radiation patterns of the dual band antenna at both frequencies become more symmetrical with increased gain.
Citation
Thelaha Masri, Mohamad Kamal Abd Rahim, Osman Ayop, Farid Zubir, Noor Asmawati Binti Samsuri, and Huda Abdul Majid, "Electromagnetic Band Gap Structures Incorporate with Dual Band Microstrip Antenna Array," Progress In Electromagnetics Research M, Vol. 11, 111-122, 2010.
doi:10.2528/PIERM10011401
References

1. Masri, T., M. K. A. Rahim, and O. Ayop, "Dual band microstrip array antenna radiation characteristics enhancement via novel band rejection technique using EBG structures," 2008 Asia Pacific Microwave Conference, (APMC 2009), December 2008.

2. Masri, T., M. K. A. Rahim, and M. N. A. Karim, "A novel 2D Minkowski gasket EBG structure for multiband microstrip antenna," European Conference on Antenna and Propagation (EuCAP 2007), Edinburgh, U.K., November 11-16, 2007.

3. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

4. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its application for microwave circuits," IEEE Transaction on Microwave Theory and Techniques, Vol. 53, No. 1, January 2005.

5. Yang, F. and Y. Rahmat-samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transaction on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

6. Diaz, R., V. Sanchez, E. Caswell, and A. Miller, "Magnetic loading of artificial magnetic conductors for bandwidth enhancement," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 431-434, 2003.

7. Du, Z. W., K. Gong, J. S. Fu, B. X. Gao, and Z. H. Feng, "A compact planar inverted-F antenna with a PBG-type ground plane for mobile communication," IEEE Transaction on Vehicular Technology, Vol. 52, No. 3, 483-489, 2003.
doi:10.1109/TVT.2003.811526

8. Sievenpiper, D. and J. H. Schauffner, "Textured surface having high electromagnetic impedance in multiple frequency bands,", U.S. Patent 6,483,481, November 19, 2002.

9. Broas, R. F. J., D. F. Sievenpiper, and E. Yablonovitch, "A high-impedance ground plane applied to a cellphone handset geometry," IEEE Transaction on Microwave Theory and Techniques, Vol. 49, No. 7, 1262-1265, 2001.
doi:10.1109/22.932245

10. Pirhadi, A., M. Hakak, and F. Keshmiri, "Using electromagnetic band gap superstrate to enhance the bandwidth of probefed microstrip antenna," Progress In Electromagnetic Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

11. Shaban, H. F., H. A. Elmikatay, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patches microstrip antenna," Progress In Electromagnetic Research B, Vol. 10, 55-74, 2008.
doi:10.2528/PIERB08081901

12. Zhang, L.-J., C.-H. Liang, L. Liang, and L. Chen, "A novel design approach for dual band electromagnetic band gap structure," Progress In Electromagnetic Research M, Vol. 4, 81-91, 2008.
doi:10.2528/PIERM08071107