Vol. 12
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-04-29
Analysis of Self-Collimation Based Cavity Resonator Formed by Photonic Crystal
By
Progress In Electromagnetics Research M, Vol. 12, 115-130, 2010
Abstract
The self-collimation effect in photonic crystal is used for the realization of open cavity resonator formed by photonic prisms in a four-port arrangement. The confinement, field enhancement and energy storage capabilities of the proposed cavity are explored in this paper. The effect of dielectric losses included in the system and role of the position of line source in the confinement effect of the cavity are brought out. Decay of short Gaussian pulse placed inside the cavity is analyzed through finite-difference time-domain studies. Due to the high confinement and divergence less beam propagation, utility of the proposed cavity for rotational gyroscope application is also revealed.
Citation
Natesan Yogesh Venkatachalam Subramanian , "Analysis of Self-Collimation Based Cavity Resonator Formed by Photonic Crystal," Progress In Electromagnetics Research M, Vol. 12, 115-130, 2010.
doi:10.2528/PIERM10012604
http://www.jpier.org/PIERM/pier.php?paper=10012604
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett., Vol. 74, No. 9, 1212-1214, 1999.
doi:10.1063/1.123502

3. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B, Vol. 65, 201104(R), 2002.
doi:10.1103/PhysRevB.65.195115

4. Yu, X. and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett., Vol. 83, No. 16, 3251-3253, 2003.
doi:10.1063/1.1621736

5. Zabelin, V., L. A. Dunbar, N. L. Thomas, R. Houdre, M. V. Kotlyar, L. O'Faolain, and T. F. Krauss, "Self-collimating photonic crystal polarization beam splitter," Opt. Lett., Vol. 32, No. 5, 530-532, 2007.
doi:10.1364/OL.32.000530

6. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B, Vol. 68, 045115, 2003.
doi:10.1103/PhysRevB.68.045115

7. Ruan, Z. and S. He, "Open cavity formed by a photonic crystal with negative effective index of refraction," Opt. Lett., Vol. 30, No. 17, 2308-2310, 2005.
doi:10.1364/OL.30.002308

8. Ramakrishna, S. A., S. Guenneau, S. Enoch, G. Tayeb, and B. Gralak, "Confining light with negative refraction in checkerboard metamaterials and photonic crystals," Phys. Rev. A, Vol. 75, 063830, 2007.
doi:10.1103/PhysRevA.75.063830

9. Tanaka, Y., J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nature Mater., Vol. 6, 862-865, 2007.
doi:10.1038/nmat1994

10. Shen, X.-P., H. Kui, Y. Fang, H.-P. Li, Z.-Y.Wang, and Q. Zhong, "New configuration of ring resonator in photonic crystal based on self-collimation," Chinese Physics Letters, Vol. 25, No. 12, 4288-4291, 2008.
doi:10.1088/0256-307X/25/12/029

11. Whiteman, J. R., The Mathematics of Finite Elements and Applications, John Wiley and Sons, Chichester, 1998. http://www.comsol.com.

12. Taflove, A. and S. C. Hagness, Computational Electrodynamics --- The Finite-difference Time-domain Method, Artech House, Boston, 2000.

13. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane wave basis," Opt. Express, Vol. 8, No. 3, 173-190, 2001. http://abinitio.mit.edu/mpb.
doi:10.1364/OE.8.000173

14. Foteinopoulou, S. and C. M. Soukoulis, "Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects," Phys. Rev. B, Vol. 72, 165112, 2005.
doi:10.1103/PhysRevB.72.165112

15. Nagesh, E. D. V., N. Yogesh, and V. Subramanian, "Application of defect induced microwave band gap structure for non-destructive evaluation and the construction of a frequency selector switch," PIERS Online, Vol. 4, No. 6, 631-634, 2008.
doi:10.2529/PIERS071220053416

16. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Comp. Phys. Commun., Vol. 181, 687-702, 2010.
doi:10.1016/j.cpc.2009.11.008

17. Post, E. J., "Sagnac effect," Rev. Mod. Phys., Vol. 39, No. 2, 475-493, 1967.
doi:10.1103/RevModPhys.39.475

18. Sunada, S. and T. Harayama, "Sagnac effect in resonant microcavities," Phys. Rev. A, Vol. 74, 021801(R), 2006.
doi:10.1103/PhysRevA.74.021801

19. Steinberg, B. Z. and A. Boag, "Splitting of microcavity degenerate modes in rotating photonic crystals-the miniature optical gyroscopes ," J. Opt. Soc. Am. B, Vol. 24, No. 1, 142-151, 2007.
doi:10.1364/JOSAB.24.000142