Vol. 13

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-07-14

Higher Order Hierarchical Legendre Basis Functions Application to the Analysis of Scattering by Uniaxial Anisotropic Objects

By Chaojie Lv, Yan Shi, and Chang-Hong Liang
Progress In Electromagnetics Research M, Vol. 13, 133-143, 2010
doi:10.2528/PIERM10040509

Abstract

An efficient technique for the analysis of scattering by uniaxial anisotropic objects is presented. The technique is based on the method of higher order MoM of the surface integral equations. This higher order MoM solution uses the higher order hierarchical basis functions which are based on the modified Legendre polynomials. Numerical results are given to demonstrate that the higher order hierarchical basis functions are more accurate and efficient in the calculations of uniaxial anisotropic objects scattering problem than the low-order basis function.

Citation


Chaojie Lv, Yan Shi, and Chang-Hong Liang, "Higher Order Hierarchical Legendre Basis Functions Application to the Analysis of Scattering by Uniaxial Anisotropic Objects," Progress In Electromagnetics Research M, Vol. 13, 133-143, 2010.
doi:10.2528/PIERM10040509
http://www.jpier.org/PIERM/pier.php?paper=10040509

References


    1. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE, New York, 1993.

    2. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, May 1982.
    doi:10.1109/TAP.1982.1142818

    3. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propag., Vol. 32, No. 1, 77-85, Jan. 1984.
    doi:10.1109/TAP.1984.1143193

    4. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
    doi:10.1109/8.633855

    5. Sertel, K. and J. L. Volakis, "Multilevel fast multipole method solution of volume integral equations using parametric geometry modeling," IEEE Trans. Antennas Propag., Vol. 52, No. 7, 1686-1692, Jul. 2004.
    doi:10.1109/TAP.2004.831401

    6. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems ," Radio Science, Vol. 31, No. 5, 1225-1251, Sep.-Oct. 1996.
    doi:10.1029/96RS02504

    7. Zhang, Z. Q. and Q. H. Liu, "A volume adaptive integral method (VAIM) for 3-D inhomogeneous objects," IEEE Antennas Wireless Propag. Lett., Vol. 1, 102-105, 2002.
    doi:10.1109/LAWP.2002.805126

    8. Phillips, J. and J. White, "A precorrected-fft method for electrostatic analysis of complicated 3-d structures," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., Vol. 16, No. 10, 1059-1072, 1997.
    doi:10.1109/43.662670

    9. Nie, X. C., N. Yuan, L. W. Li, Y. B. Gan, and T. S. Yeo, "A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 818-824, Feb. 2005.
    doi:10.1109/TAP.2004.841323

    10. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical legendre basis functions for electromagnetic modeling," IEEE Trans. Antennas Propag., Vol. 52, 2985-2995, Nov. 2004.

    11. Jorgensen, E., P. Meincke, and O. Breinbjerg, "A hybrid PO higher-order hierarchical MoM formulation using curvilinear geometry modeling," IEEE International Symposium on Antennas and Propagation, Columbus, OH, USA, Jun. 2003.

    12. Jorgensen, E., O. Kim, P. Meincke, and O. Breinbjcrg, "Higher-order hierarchical discretizationscheme for surface integral equations for layered media," IEEE Trans. on Geoscience and Remote Sensing, Vol. 42, No. 4, 764-772, Apr. 2004.
    doi:10.1109/TGRS.2003.819881

    13. Kim, O. S., P. Meincke, O. Breinbjerg, and E. JΦrgensen, "Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions," Radio Science, Vol. 39, 5003, 2004, 10.1029/2004RS003041.

    14. Weiglhofer, W. S., "Dyadic green's functions for general uniaxial media," IEEE Proc. Microw. Antennas Propag., Vol. 137, No. 1, 5-10, Feb. 1990.
    doi:10.1049/ip-h-2.1990.0002