We extend our previously-derived generalized closed-form representation for spectral dispersing performance of the Virtually-Imaged-Phased-Array (VIPA) based on a 3D vectorial Gaussian beam formulation to demultiplexing application. To analyze VIPA in the demultiplexer scheme, a spherical lens is added after the VIPA, so that the device plane is superimposed on the focal plane of the lens. The calculated output profile at previous step is reformulated in a matrix form in this step. Finally, the derived closed-form is simulated, and the numerical outcomes are compared with the previous results. The 3D output radiation of VIPA demultiplexer pattern is also depicted and found to be very intuitive and promising for some applications especially WDM demultiplexer and optical Code Division Multiple Access (CDMA).
2. Okamoto, K., "Recent progress of integrated optics planar lightwave circuits," Opt. Quantum Electron., Vol. 31, 107-129, 1999.
doi:10.1023/A:1006975415469
3. Park, S. J., C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, "Fiber-to-the-Home services based on wavelength-division-multiplexing passive optical networks," IEEE J. Lightwave Technol., Vol. 22, No. 11, 2582-2591, 2004.
doi:10.1109/JLT.2004.834504
4. Shirasaki, M., "Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer," Optics Letters, Vol. 21, 366-368, 1996.
doi:10.1364/OL.21.000366
5. Shirasaki, M., "Chromatic-dispersion compensator using virtually imaged phased array," IEEE Photon. Technol. Lett., Vol. 9, 1598-1560, 1997.
doi:10.1109/68.643280
6. Shirasaki, M., "Compensation of chromatic dispersion and dispersion slope using a virtually imaged phased array," OFC'01, 2001.
7. Shirasaki, M., A. N. Akhter, and C. Lin, "Virtually imaged phased array with graded reflectivity," IEEE Photon. Technol. Lett., Vol. 11, 1443-1445, 1999.
doi:10.1109/68.803073
8. Leaird, D. E. and A. M. Weiner, "Femtosecond direct space-to-time pulse shaping ," IEEE J. of Quantum Electronics, Vol. 37, No. 4, 494-504, 2001.
doi:10.1109/3.914397
9. Etemad, S., T. Banwell, S. Galli, J. Jackel, R. Menendez, P. Toliver, J. Young, P. Delfyett, C. Price, and T. Turpin, "Optical-CDMA incorporating phase coding of coherent frequency bins: Concept, simulation, experiment," OFC'04, FG5, 2004.
10. Xiao, S., J. D. McKinney, and A. M.Weiner, "Photonic microwave arbitrary waveform generation using a vipa direct space-to-time pulse shaper," IEEE Photon. Technol. Lett., Vol. 16, No. 8, 1936-1938, 2004.
doi:10.1109/LPT.2004.831324
11. Lee, G. and A. M. Weiner, "Programmable optical pulse burst manipulation using a VIPA based fourier transform pulse shaper," IEEE J. Lightwave Technol., Vol. 23, No. 11, 3916, 2005.
doi:10.1109/JLT.2005.857739
12. Yang, L., "Analytical treatment of virtual image phase array," OFC'02, 321-322, Anaheim, CA, 2002.
13. Vega, A., A. M.Weiner, and C. Lin, "Generalized grating equation for virtually-imaged phased-array spectral dispersers," Appl. Opt., Vol. 42, No. 20, 4152-4155, 2003.
doi:10.1364/AO.42.004152
14. Xiao, S., A. M.Weiner, and C. Lin, "A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory," IEEE J. of Quantum Electronics, Vol. 40, No. 4, 420-426, 2004.
doi:10.1109/JQE.2004.825210
15. Xiao, S., A. M.Weiner, and C. Lin, "Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA)," IEEE J. Lightwave Technol., Vol. 23, No. 3, 1456, 2005.
doi:10.1109/JLT.2005.843531
16. Mokhtari, A. and A. A. Shishegar, "A rigorous vectorial Gaussian beam modeling of virtually-imaged-phased-arrays," AOE'07, 514-516, 2007.
17. Mokhtari, A. and A. A. Shishegar, "Rigorous vectorial Gaussian beam modeling of spectral dispersing performance of virtually imaged phased arrays," J. Opt. Soc. Am. B, Vol. 26, No. 2, 272-278, 2009.
doi:10.1364/JOSAB.26.000272
18. Goodman, J. W., Introduction to Fourier Optics, 77-96, McGraw-Hill, San Francisco, CA, 1968.
19. Haus, H. A., Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, 1984.
20. Ramo, S., "Fields and Waves in Communication Electronics," John Wiley & Sons, 1994.
21. Verdeyen, J. T., "Laser Electronics," Prentice Hall, 1995.
22. Arnaud, J. A. and H. Kogelnik, "Gaussian light beams with general astigmatism," Applied Optics, Vol. 8, No. 8, 1687-1694, 1969.
doi:10.1364/AO.8.001687
23. Iizuka, K., Elements of Photonics, Fabry-perot Resonator Beams and Radiation Pressure, Vol. 1, Chap. 3, 181, Wiley Interscience, 2002.
24. Prucnal, P. R., Optical Code Division Multiple Access: Fundamentals and Applications, CRC Press, New York, 2006.