A shielded, conductor-backed coplanar waveguide technique is used to determine the complex permittivity and loss tangent of nano magnetic composite materials over X-band. The test composite material is synthesized by reinforcing cobalt ferrite particles with average crystallite diameter 7.36nm in low density polyethylene matrix with 2% and 4% volume fractions. The complex permittivity for low density polyethylene matrix and the composite samples, evaluated from the present technique at 9.887 GHz, are verified with cavity perturbation technique resonating at the same frequency. A new mathematical approach, using element-to-element correspondence of the ABCD matrix, is applied to calculate the complex propagation constant. The formulation facilitates evaluation of complex propagation constant over the test frequency range using scalar scattering parameters without altering the coplanar waveguide geometry. The mathematical formulation is verified by performing permittivity measurements for air over the X-band.
2. Murthy, V. R. K., S. Sunderam, and B. Viswanathan, Microwave Materials, 100, Narosa Publishing House, 1990.
3. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, "Microwave Electronics Measurement and Material Characterization," John Willey and Sons, West Sussex, England, 2004, 37.
4. Yamashita, E., K. Atsuki, and T. Hirahata, "Microstrip dispersion in a wide frequency range," IEEE Trans. Microw. Theory Tech., Vol. 29, No. 6, 610-611, 1981.
doi:10.1109/TMTT.1981.1130403
5. Yamashita, E., K. Atsuki, and T. Ueda, "An approximate dispersion formula of microstrip lines for computer aided design of microwave integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 27, No. 12, 1036-1038, 1979.
doi:10.1109/TMTT.1979.1129787
6. Krupka, J., "Frequency domain complex permittivity measurements at microwave frequencies," Meas. Sci. Technol., Vol. 17, 55-70, Apr. 2006.
doi:10.1088/0957-0233/17/6/R01
7. Kang, B., J. Cho, C. Cheon, and Y. Kwon, "Nondestructive measurement of complex permittivity and permeability using multilayered coplanar waveguide structures," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 5, 381-383, May 2005.
doi:10.1109/LMWC.2005.847738
8. Hinojosa, J., "S-parameter broadband measurements on-coplanar and fast extraction of the substrate intrinsic properties," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 2, 80-82, Feb. 2001.
doi:10.1109/7260.914309
9. Queffelec, P., P. Gelin, J. Gieraltowski, and J. Loaec, "A microstrip device for the broadband simultaneous measurement of complex permeability and permittivity ," IEEE Trans. Magn., Vol. 30, No. 2, 224-231, Mar. 1994.
doi:10.1109/20.312262
10. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, No. 2, 387-394, Apr. 1990.
doi:10.1109/19.52520
11. Mellegol, S. and P. Queffelec, "Extension and error analysis of the microstrip transmission-line method for the broad-band measurement of the permeability tensor," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1065-1075, Mar. 2006.
doi:10.1109/TMTT.2005.864132
12. Bahadoor, A., Y. Wang, and M. Afsar, "Complex permittivity and permeability of hexaferrite and carbonyl iron powders using rectangular waveguide technique from 8.0-40.0 GHz," Dig. IEEE Int. Magnetics Conf. INTERMAG Asia, 891-892, Nagoya Congress Center, Japan, 2005.
13. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, "Microwave Electronics Measurement and Material Characterization," 291, John Willey and Sons, West Sussex, England, 2004.
14. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382
15. Barry, W., "A broad-band automated stripline technique for the simultaneous measurement of complex permittivity and permeability ," IEEE Trans. Microw. Theory Tech., Vol. 34, No. 1, 80-84, Jan. 1986.
doi:10.1109/TMTT.1986.1133283
16. Hu, J., A. Sligar, C. H. Chang, S. L. Lu, and R. K. Settaluri, "A grounded coplanar waveguide technique for microwave measurement of complex permittivity and permeability," IEEE Trans. Magn., Vol. 42, No. 7, 1929-1931, Jul. 2006.
17. Azaro, R., F. Caramanica, and G. Oliveri, "Determination of the complex permittivity values of planar dielectric substrates by means of a multifrequency PSO-based technique," Progress In Electromagnetics Research M, Vol. 10, 83-91, 2009.
doi:10.2528/PIERM09112901
18. Ocera, A., M. Dionigi, E. Fratticcioli, and R. Sorrentino, "A novel technique for complex permittivity measurement based on a planar four-port device," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2568-2575, Jun. 2006.
doi:10.1109/TMTT.2006.872914
19. Goodenough, J. B., Magnetism and Chemical Bond, 214, Willey, New York, 1963.
20. Altunyurt, N., M. Swaminathan, P. M. Raj, and V. Nair, "Antenna miniaturization using magneto-dielectric substrates," Proc. IEEE Electronics Components and Technol. Conf., 801-808, Sep. 2009.
21. Mosallaei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetics: concept and applications," IEEE Trans. on Antennas and Propagation, Vol. 52, No. 6, 1558-1567, Jun. 2004.
doi:10.1109/TAP.2004.829413
22. Pozar, D. M. and Microwave Engineering, , 206, John Willey and Sons, 1998.
23. Wolff, I., Coplanar Microwave Integrated Circuits, 12, John Willey and Sons, 2006.
24. Ghione, G. and C. U. Naldi, "Coplanar waveguides for MMIC application: E®ect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 3, 260-267, 1987.
doi:10.1109/TMTT.1987.1133637
25. Wolff, I., Coplanar Microwave Integrated Circuits, 217, John Willey and Sons, 2006.
26. Wolff, I., "Coplanar Microwave Integrated Circuits," 20, John Willey and Sons, 2006.
27. Simons, R. N., Coplanar Waveguide Circuits, Components and Systems, 94, John Willey and Sons, 2001.
28. Bedair, S. S. and I. Wolff, "Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for MMIC's," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 1, 41-48, Jan. 1992.
doi:10.1109/22.108321
29. Hilberg, W., "From approximation to exact relations for characteristic impedances," IEEE Trans. Microw. Theory Tech., Vol. 17, No. 5, 259-265, 1969.
doi:10.1109/TMTT.1969.1126946
30. Deka, J. R., N. S. Bhattacharyya, and S. Bhattacharyya, "Development of low cost automated PC-based insertion loss measurement setup using a simple source and detector in X-band ," IETE Tech. Rev., Vol. 22, 425, 2005.
31. Borah, S. and N. S. Bhattacharyya, Synthesis and characterization of reduced size ferrite reinforced polymer composites, AIP Proc. Int. Conf. on Magnetic Materials, (Kolkata, India, Dec. 2007), Vol. 1003, 261-263, 2008.
32. Wu, M., X. Yao, and L. Zhang, "An improved coaxial probe technique for measuring microwave permittivity of thin dielectric materials," Meas. Sci. Technol., Vol. 11, 1617-1622, 2000.
doi:10.1088/0957-0233/11/11/311
33. Griffiths, D. J., Introduction to Electrodynamics, 398-402, Prentice-Hall of India Pvt. Ltd., 1999.
34. Todd, M. G. and F. G. Shi, "Complex permittivity of composite systems: A comprehensive interphase approach," IEEE Trans. on Diel. and Elect. Insul., Vol. 12, No. 3, 601-611, Jun. 2005.
doi:10.1109/TDEI.2005.1453466
35. Ku, H. S., J. A. R. Ball, E. Siores, and B. Horsfield, "Microwave processing and permittivity measurement of thermoplastic composites at elevated temperature," Journal of Materials Processing Technology, Vol. 89-90, 419-424, 1999.
doi:10.1016/S0924-0136(99)00018-7