Vol. 13

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-06-16

Shift-Operator Finite Difference Time Domain Analysis of Chiral Medium

By Ahmed Attiya
Progress In Electromagnetics Research M, Vol. 13, 29-40, 2010
doi:10.2528/PIERM10052403

Abstract

Shift-Operator Finite difference Time Domain (SO-FDTD) method is introduced as a new efficient technique for simulating electromagnetic wave interaction with chiral medium. The dispersive properties of this medium are presented as polynomials of . These polynomials are converted to time domain by replacing by the time derivative operator. Then this time derivative operator is converted to the corresponding time shift operator which is used directly to obtain the corresponding update equations of electric and magnetic field components. The resulting update equations do not require time convolution or additional vector components. The present analysis does not require also any transformation. Significant improvement is obtained in memory requirements by using this method while the computational time is nearly the same compared with other similar techniques like Z-transformation FDTD.

Citation


Ahmed Attiya, "Shift-Operator Finite Difference Time Domain Analysis of Chiral Medium," Progress In Electromagnetics Research M, Vol. 13, 29-40, 2010.
doi:10.2528/PIERM10052403
http://www.jpier.org/PIERM/pier.php?paper=10052403

References


    1. Bassiri, S., C. H. Pappas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," J. Opt. Soc. Amer. A, Vol. 5, No. 9, 1450-1459, 1988.
    doi:10.1364/JOSAA.5.001450

    2. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propag., Vol. 51, No. 5, 1077-1084, 2003.
    doi:10.1109/TAP.2003.811501

    3. Akyurtlu, A. and D. H. Werner, "A novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials," IEEE Trans. Antennas Propag., Vol. 52, 2267-2276, 2004.
    doi:10.1109/TAP.2004.834153

    4. Barba, I., A. Grande, A. C. L. Cabeceira, and J. Represa, "A multiresolution model of transient microwave signals in dispersive chiral media," IEEE Trans. Antennas Propag., Vol. 54, 2808-2812, 2006.
    doi:10.1109/TAP.2006.880764

    5. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. Antennas Propag., Vol. 53, 3374-3384, 2005.
    doi:10.1109/TAP.2005.856328

    6. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "FDTD modeling of chiral media by using the Mobius transformation techniques," IEEE Antennas Wireless Propag. Lett., Vol. 5, 327-330, 2006.
    doi:10.1109/LAWP.2006.878902

    7. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the ¯nite di®erence frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
    doi:10.2528/PIER06083104

    8. Grande, A., J. A. Pereda, O. Gonzalez, and A. Vegas, "On the equivalence of several FDTD formulations for modeling electromagnetic wave propagation in double-negative metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 6, 324-327, 2007.
    doi:10.1109/LAWP.2007.899921

    9. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
    doi:10.2528/PIER09072603

    10. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2005.

    11. Yang, H. W., "A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation," Computer Physics Communication, Vol. 180, 55-60, 2009.
    doi:10.1016/j.cpc.2008.08.007

    12. Yang, H. W., R. S. Chen, and Y. Zhou, "SO-FDTD analysis on magnetized plasma," Int. J. Infrared Milli. Waves, Vol. 28, 751-758, 2007.
    doi:10.1007/s10762-007-9246-4

    13. Duan, X., H. W. Yang, X. Kong, and H. Liu, "Analysis on the calculation of plasma medium with parallel SO-FDTD method," ETRI Journal, Vol. 31, 387-392, 2009.
    doi:10.4218/etrij.09.0108.0698

    14. Ma, L.-X., H. Zhang, H.-X. Zheng, and C.-X. Zhang, "Shift-operator FDTD method for anisotropic plasma in kDB coordinates system ," Progress In Electromagnetics Research M, Vol. 12, 51-65, 2010.
    doi:10.2528/PIERM09122901

    15. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Timeharmonic electromagnetic fields in chiral media," Lecture Notes n Physics, Vol. 335, Springer-Verlag, New York, 1989.

    16. Ramadan, O., "Addendum to: `A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation Computer Physics Communications Vol. 180, No. 1, 55-60, 2009. A short comment on the equivalence of the shift-operator FDTD method and the bilinear frequency approximation technique for modeling dispersive electromagnetic applications," Computer Physics Communications, Vol. 181, 1275-1276, 2010.
    doi:10.1016/j.cpc.2010.03.002

    17. Proakis , J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 3rd Ed., Prentice Hall International Editions, 1996.