Vol. 13

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Analytic Expression for the Effective Plasma Frequency in One-Dimensional Metallic-Dielectric Photonic Crystal

By Jesus Manzanares-Martinez
Progress In Electromagnetics Research M, Vol. 13, 189-202, 2010


In this work, an analytic expression to define the effective plasma frequency of an one-dimensional periodic system containing alternating dielectric and metallic slabs is proposed. Such metallic elements are considered to have a Drude dielectric function. The effective plasma frequency is obtained as a simple average of the constitutive materials, and its cutoff frequency for the propagating modes is compared with band structure calculations. We also explore the role of absorption in the transparency frequency cutoff.


Jesus Manzanares-Martinez, "Analytic Expression for the Effective Plasma Frequency in One-Dimensional Metallic-Dielectric Photonic Crystal," Progress In Electromagnetics Research M, Vol. 13, 189-202, 2010.


    1. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett., Vol. 76, No. 14, 2480-2483, 1996.

    2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.

    3. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, Berlin, 1988.

    4. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, 1995.

    5. Low, K. L., M. Z. MatJarfi, and S. A. Khan, "Effective plasma frequency for two-dimensional metallic photonic crystals," Progress In Electromagnetics Research M, Vol. 12, 67-79, 2010.

    6. Jiang, T., L. Shen, X. Zhang, and L. X. Ran, "High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces ," Progress In Electromagnetics Research M, Vol. 8, 91-102, 2009.

    7. Soto-Puebla, D., M. Xiao, and F. Ramos-Mendieta, "Optical properties of a dielectric-metallic superlattice: The complex photonic bands," Phys. Lett. A, Vol. 326, 273-280, 2004.

    8. Kong, F., K. Li, H. Huang, B. I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.

    9. Apostol, M. and G. Vaman, "Plasmons and diffraction of an electromagnetic plane wave by a metallic sphere," Progress In Electromagnetics Research, Vol. 98, 97-118, 2009.

    10. Srivastava, S. K. and S. P. Ojha, "Photonic band gaps in one-dimensional metallic star waveguide structure," Progress In Electromagnetics Research, Vol. 84, 349-362, 2008.

    11. Pokrovsky, A. L. and A. L. Efros, "Electrodynamics of metallic photonic crystals and the problem of left-handed materials," Phys. Rev. Lett., Vol. 89, No. 9, 093901-093904, 2002.

    12. Maslovski, S. I., S. A. Tetryakov, and P. A. Belov, "Wire media with negative effective permittivity: A quasi-static model," Microwave Opt. Technol. Lett., Vol. 35, No. 1, 47-51, 2002.

    13. Markos, P. and C. M. Soukoulis, "Absorption losses in periodic arrays of thin metallic wires," Opt. Lett., Vol. 28, 846-848, 2003.

    14. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech-House Publishing, New-York, 2004.

    15. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, No. 22, 4785-4809, 1998.

    16. Smith, D. R., D. C. Vier, W. Padilla, C. S. Nemat-Nasse, and S. Shultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Appl. Phys. Lett., Vol. 75, 1425-1427, 1999.

    17. Sigalas, M. M., C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B, Vol. 52, No. 16, 11744-11751, 1995.

    18. Brand, S., R. A. Abram, and M. A. Kaliteevski, "Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods," Phys. Rev. B, Vol. 75, No. 3, 035102-035109, 2007.

    19. Sarychev, A. K. and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep., Vol. 335, 275-371, 2000.

    20. Pimenov, A. and A. Loidl, "Experimental demonstration of artificial dielectrics with a high index of refraction," Phys. Rev. B, Vol. 74, No. 19, 193102-193105, 2006.

    21. Pimenov, A., M. Biberacher, D. Ivannikov, A. Loidl, A. A. Mukhin, Y. G. Goncharov, and A. M. Balbashov, "Scaling of terahertz conductivity at the metal-insulator transition in doped manganites ," Phys. Rev. B, Vol. 73, No. 22, 220407-220410, 2006.

    22. Pimenov, A. and A. Loidl, "Conductivity and permittivity of two-dimensional metallic photonic crystals," Phys. Rev. Lett., Vol. 96, No. 6, 063903-063906, 2006.

    23. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 282, 77-79, 2001.

    24. Ward, A. J., J. B. Pendry, and W. J. Stewart, "Photonic dispersion surfaces," J. Phys.: Condens. Matter, Vol. 7, 2217-2224, 1995.

    25. Scalora, M., M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J. Appl. Phys., Vol. 83, No. 5, 2377-2383, 1998.

    26. Bloemer, M. J. and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett., Vol. 72, No. 14, 1676-1678, 1998.

    27. Feng, S., J. M. Elson, and P. L. Overfelt, "Transparent photonic band in metallodielectric nanostructures," Phys. Rev. B, Vol. 72, No. 8, 085117-085122, 2005.

    28. Xu, X., Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, "Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals ," Appl. Phys. Lett., Vol. 86, 09112-09114, 2005.

    29. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.

    30. Yeh, P., A. Yariv, and C. H. Hong, "Electromagnetic propagation in periodic startified media. I. General theory," J. Opt. Soc. A, Vol. 67, No. 4, 423-438, 1977.

    31. Bergmair, M., M. Huber, and K. Hingerl, "Band structure, Wiener bounds, and coupled surface plasmons in one dimensional photonic crystals," Appl. Phys. Lett., Vol. 89, 081907-081909, 2006.