Vol. 14
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-11-07
Characteristics Analysis of Repetition Frequency High-Power Microwave Pulses in Atmosphere
By
Progress In Electromagnetics Research M, Vol. 14, 207-220, 2010
Abstract
A semi-analytical model for the propagation of the repetition frequency high power microwave (HPM) pulses is established. The effects of different parameters of the repetition frequency HPM pulses on air breakdown are analyzed. A critical repetition frequency for the HPM pulse is presented under which the electron density does not exceed that of the air breakdown when the individual pulse arrives. The prediction for the critical repetition frequency and the threshold of the air breakdown due to the repetition frequency HPM pulses is demonstrated with several numerical simulations.
Citation
Tao Tang, Cheng Liao, and Wenbin Lin, "Characteristics Analysis of Repetition Frequency High-Power Microwave Pulses in Atmosphere," Progress In Electromagnetics Research M, Vol. 14, 207-220, 2010.
doi:10.2528/PIERM10092010
References

1. Pai, S. T. and Q. Zhang, Introduction to High Power Pulse Technology, World Scientific, Singapore, 1995.

2. Martin, T. H., M. Williams, and M. Kristiansen, "J. C. Martin on Pulsed Power," Plenum Press, 1996.

3. Kitsanov, S. A., A. I. Klimov, S. D. Korovin, I. K. Kurkan, I. V. Pegel, and S. D. Polevin, "A vircator with electron beam premodulation based on high-current repetitively pulse accelerator," IEEE Transactions on Plasma Science, Vol. 30, No. 1, 278-285, 2002.
doi:10.1109/TPS.2002.1003871

4. Soliman, M. S., T. Morimoto, and Z. I. Kawasaki, "Three-dimensional localization system for impulsive noise sources using ultra-wideband digital interferometer technique," Journal of Elelctromagnetics Wave and Applications, Vol. 20, No. 4, 515-530, 2006.
doi:10.1163/156939306776117027

5. Golestani-Rad, L. and J. Rashed-Mohassel, "Rigorous analysis of EM-wave penetration into a typical room using FDTD method: The transfer function concept," Journal of Elelctromagnetics Wave and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851

6. Hwang, S. M., J. I. Hong, and C. S. Huh, "Characterization of the susceptibility of integrated circuits with induction caused by high power microwaves," Progress In Electromagnetics Research, Vol. 81, 61-72, 2008.
doi:10.2528/PIER07121704

7. Mesyats, G. A., V. G. Shpak, M. I. Yalandin, and S. A. Shunailov, "Compact high-current repetitive pulse accelerators," Pulse Power Conf., 73-77, San Diego, USA, Jun. 1991.

8. Cao, J. K., D. F. Zhou, Z. X. Niu, Y. Shao, W. Zou, and Z. W. Xing, "Air breakdown by repetition-rate high power microwave pulse," High Power Laser and Particle Beams, Vol. 18, No. 1, 115-118, 2006.

9. Hu, T., D. F. Zhou, Q. R. Li, and Z. X. Niu, "Effect of electronic relaxation process on air breakdown caused by repetition frequency HPM," High Power Laser And Particle Beams, Vol. 21, No. 4, 545-549, 2009.

10. Kuo, S. P., Y. S. Zhang, and K. Paul, "Propagation of high power microwave pulses in air breakdown environment," Phys. Fluids, Vol. 133, No. 10, 2906-2912, 1991.

11. Duan, Y. Y. and Y. S. Chen, "Air breakdown of high power microwave pulse and its effect on transmitted energy," Journal of Microwaves, Vol. 16, No. 3, 260-264, 2000.

12. Woo, W. and J. S. DeGroot, "Micowave absorption and plasma heating due to microwave breakdown in the atmosphere," Phys. Fluids, Vol. 27, No. 2, 475-487, 1984.
doi:10.1063/1.864645

13. Yee, J. H., D. J. Mayhall, G. E. Sieger, and R. A. Alvarez, "Propagation of intense microwave pulses in air and in a waveguide," IEEE Trans. on Antennas and Propagation, Vol. 39, No. 9, 1421-1426, 1991.
doi:10.1109/8.99053

14. MacDonald, A. D., "Microwave Breakdown in Gases," Wiley, 1966.

15. Niu, Z. X., D. J. Yu, J. H. Yang, D. F. Zhou, and D. T. Hou, "Non-linear attenuation of high power microwave propagation in atmosphere," Journal of Information Engineering University, Vol. 5, No. 2, 115-117, 2004.

16. Anderson, D. and M. Lisak, "Breakdown in air-filled microwave waveguides during pulsed operation," J. Appl. Phys., Vol. 56, No. 5, 1414-1419, 1984.
doi:10.1063/1.334140

17. Hou, D. T., D. F. Zhou, Z. X. Niu, and Z. Q. Yu, "Effect on air refraction index by effective electric-field intensity in high power microwave propagation," High Power Laser And Particle Beams, Vol. 16, No. 9, 1183-1185, 2004.

18. Lófgren, M., D. Anderson, M. Lisak, and L. Lundgren, "Breakdown-induced distortion of high-power microwave pubes in air," Phys. Fluids, Vol. B3, No. 12, 3528-3531, 1991.

19. Tang, T., C. Liao, and D. Yang, "Feasibility study of solving high-power microwave propagation in the atmosphere using FDTD method," Chinese Journal of Radio Science, Vol. 25, No. 1, 122-126, 2010.

20. Scholfield, D. W., J. M. Gahl, and N. Shimomura, "Effective electric field for an arbitrary electromagnetic pulse," IEEE Trans. on Plasma Science, Vol. 27, No. 2, 628-632, 1999.
doi:10.1109/27.772295

21. Ali, A. W., "Nanosecond air breakdown parameters for electron and microwave beam propagation," Laser and Particle Beams, Vol. 6, 105-117, 1988.
doi:10.1017/S0263034600003840