Vol. 16

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Coherent Backscattering of Circularly Polarized Light from a Disperse Random Medium

By Igor Meglinski and Vladimir L. Kuzmin
Progress In Electromagnetics Research M, Vol. 16, 47-61, 2011


To describe propagation of polarized electromagnetic wave within a disperse random medium a new Monte Carlo based technique with an adopted vector formalism has been developed. The technique has been applied for simulation of coherent backscattering of circularly polarized optical radiation from a random scattering medium. It has been found that the sign of helicity of circular polarized light does not change for a medium of point-like scatterers and can change significantly for the scatterers with the higher anisotropy. We conclude that the helicity flip of the circular polarized light can be observed in the tissue-like media. We find that this phenomenon manifests itself in case of limited number of scattering events and, apparently, can be attributed to the pulse character of incident radiation rather than to the specific form of scattering particles.


Igor Meglinski and Vladimir L. Kuzmin, "Coherent Backscattering of Circularly Polarized Light from a Disperse Random Medium," Progress In Electromagnetics Research M, Vol. 16, 47-61, 2011.


    1. Tuchin, V. V., Handbook of Photonics for Biomedical Science, Series in Medical Physics and Biomedical Engineering, CRC Press , 2010.

    2. Tuchin, V. V., Handbook of Optical Biomedical Diagnostics, SPIE Optical Engineering Press, Bellingham, WA, 2002.

    3. Dolin, L. S., "Development of radiative transfer theory as applied to instrumental imaging in turbid media," Phys.-Usp., Vol. 52, 519-526, 2009.

    4. Martelli, F., S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software, SPIE Press, , 2009.

    5. Meglinski, I. V., V. L. Kuzmin, D. Y. Churmakov, and D. A. Greenhalgh, "Monte carlo simulation of coherent effects in multiple scattering," Proc. Roy. Soc. A, Vol. 461, 43-51, 2005.

    6. Kuzmin, V. L. , I. V. Meglinski, and D. Y. Churmakov, "Stochastic Modeling of coherent phenomena in strongly inhomogeneous media," J. Exp. Theor. Phys., Vol. 101, 22-32, 2005.

    7. Berrocal, E., D. Sedarsky, M. Paciaroni, I. V. Meglinski, and M. A. Linne, "Laser light scattering in turbid media. Part II: Spatial analysis of individual scattering orders," Opt. Express, Vol. 17, 13792-13809, 2009.

    8. Berrocal, E., I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, "Image transfer through the complex scattering turbid media," Laser Phys. Lett., Vol. 3, 464-467, 2006.

    9. Berrocal , E., D. Y. Churmakov, V. P. Romanov, M. C. Jermy, I. V. Meglinski, "Crossed source detector geometry for novel spray diagnostic: Monte Carlo simulation and analytical results," Appl. Opt., Vol. 44, 2519-2529, 2005.

    10. Meglinski, I. V. and S. J. Matcher, "The analysis of spatial distribution of the detector depth sensitivity in multi-layered inhomogeneous highly scattering and absorbing medium by the Monte Carlo technique," Opt. Spectrosc., Vol. 91, 654-659, 2001.

    11. Meglinski, I. V., "Modelling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highlyd scattering and absorbing media by the Monte Carlo technique," Quantum Electron., Vol. 31, 1101-1107, 2001.

    12. Churmakov, D. Y., I. V. Meglinski, D. A. Greenhalgh, "Amending of fluorescence sensor signal localization in human skin by matching of the refractive index," J. Biomed. Opt., Vol. 9, 339-346, 2004.

    13. Meglinski, I. V., M. Kirillin, V. L. Kuzmin, and R. Myllyla, "Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method," Opt. Lett., Vol. 33, 1581-1583, 2008.

    14. Kirillin, M. , I. Meglinski, E. Sergeeva, V. L. Kuzmin, and R. Myllyla, "Polarization sensitive optical coherence tomography image simulation by monte carlo modeling," Opt. Express, Vol. 18, 21714-21724, 2010.

    15. Xu, M. and R. R. Alfano, "Random walk of polarized light in turbid media," Phys. Rev. Lett., Vol. 95, 213901, 2005.

    16. Kim, A. D. and M. Moscoso, "Backscattering of circularly polarized pulses," Opt. Lett., Vol. 27, 1589-1591, 2002.

    17. Cai, , W., N. Xiaohui, S. R. Gayen, and R. R. Alfano, "Analytical cumulant solution of the vector radiative transfer equation investigates backscattering of circularly polarized light from turbid media," Phys. Rev.E, Vol. 74, 056605, 2006.

    18. Sawicki, J., N. Kastor, and M. Xu, "Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers," Opt. Express, Vol. 16, 5728-5738, 2008.

    19. Churmakov, D. Y. , V. L. Kuzmin, and I. V. Meglinski, "Application of the vector Monte-Carlo method in polarisation optical coherence tomography," Quantum Electron., Vol. 36, 1009-1015, 2006.

    20. Binzoni, T., T. S. Leung, and D. Van De Ville, "The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations," Phys. Med. Biol., Vol. 54, N303-N318, 2009.

    21. Sobol', I. M., The Monte Carlo Method, The University of Chicago Press, Chicago, 1974.

    22. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic, New York, 1978.

    23. Churmakov, D. Y. , I. V. Meglinski, and D. A. Greenhalgh, "Influence of refractive index matching on the photon diffuse reflectance," Phys. Med. Biol., Vol. 47, 4271-4285, 2002.

    24. Kuzmin, V. L., I. V. Meglinski, and D. Y. Churmakov, "Stochastic modeling of coherent phenomena in strongly inhomogeneous media," J. Exp. Theor. Phys., Vol. 101, 22-32, 2005.

    25. Kuzmin, , V. L. and and I. V. Meglinski, "Coherent effects of multiple scattering for scalar and electromagnetic fields: Monte-Carlo simulation and Milne-like solutions," Opt. Commun., Vol. 273, 307-310, 2007.

    26. Eddowes, M. H. , T. N. Mills, and D. T. Delpy, "Monte Carlo simulations of coherent backscatter for identification of the optical coe±cients of biological tissues in vivo," Appl. Opt., Vol. 34, 2261-2267, 1995.

    27. Amic, E. , J. M. Luck, and T. M. Nieuwenhuizen, "Multltiple rayleigh scattering of electromagnetic waves," J. Phys. I, Vol. 7, 445-483, 1997.

    28. Kuzmin, V. L. and E. V. Aksenova, "A generalized milne solution for the correlation effects of multiple light scattering with polarization," J. Exp. Theor. Phys., Vol. 96, 816-831, 2003.

    29. Mishchenko, M. I. , L. D. Travis, and A. A. Lacis, "Multiple Scattering of Light by particles," Cambridge University Press, 2006.

    30. Akkermans, E., P. E. Wolf, and R. Maynard, "Theoretical-study of the coherent backscattering of light by disordered media," J. Phys. (Fr.), Vol. 49, 77-98, 1988.

    31. Wiersma, D. S., M. P. Van Albada, B. A. Van Tiggelen, and A. Lagendijk, "Experimental evidence for recurrent multiple scattering events of light in disordered media," Phys. Rev. Lett., Vol. 74, 4193-4196, 1995.