Vol. 16

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-11-18

Coherent Backscattering of Circularly Polarized Light from a Disperse Random Medium

By Igor Meglinski and Vladimir L. Kuzmin
Progress In Electromagnetics Research M, Vol. 16, 47-61, 2011
doi:10.2528/PIERM10102106

Abstract

To describe propagation of polarized electromagnetic wave within a disperse random medium a new Monte Carlo based technique with an adopted vector formalism has been developed. The technique has been applied for simulation of coherent backscattering of circularly polarized optical radiation from a random scattering medium. It has been found that the sign of helicity of circular polarized light does not change for a medium of point-like scatterers and can change significantly for the scatterers with the higher anisotropy. We conclude that the helicity flip of the circular polarized light can be observed in the tissue-like media. We find that this phenomenon manifests itself in case of limited number of scattering events and, apparently, can be attributed to the pulse character of incident radiation rather than to the specific form of scattering particles.

Citation


Igor Meglinski and Vladimir L. Kuzmin, "Coherent Backscattering of Circularly Polarized Light from a Disperse Random Medium," Progress In Electromagnetics Research M, Vol. 16, 47-61, 2011.
doi:10.2528/PIERM10102106
http://www.jpier.org/PIERM/pier.php?paper=10102106

References


    1. Tuchin, V. V., Handbook of Photonics for Biomedical Science, Series in Medical Physics and Biomedical Engineering, CRC Press , 2010.
    doi:10.1201/9781439806296

    2. Tuchin, V. V., Handbook of Optical Biomedical Diagnostics, SPIE Optical Engineering Press, Bellingham, WA, 2002.

    3. Dolin, L. S., "Development of radiative transfer theory as applied to instrumental imaging in turbid media," Phys.-Usp., Vol. 52, 519-526, 2009.
    doi:10.3367/UFNe.0179.200905k.0553

    4. Martelli, F., S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software, SPIE Press, , 2009.

    5. Meglinski, I. V., V. L. Kuzmin, D. Y. Churmakov, and D. A. Greenhalgh, "Monte carlo simulation of coherent effects in multiple scattering," Proc. Roy. Soc. A, Vol. 461, 43-51, 2005.
    doi:10.1098/rspa.2004.1369

    6. Kuzmin, V. L. , I. V. Meglinski, and D. Y. Churmakov, "Stochastic Modeling of coherent phenomena in strongly inhomogeneous media," J. Exp. Theor. Phys., Vol. 101, 22-32, 2005.
    doi:10.1134/1.2010658

    7. Berrocal, E., D. Sedarsky, M. Paciaroni, I. V. Meglinski, and M. A. Linne, "Laser light scattering in turbid media. Part II: Spatial analysis of individual scattering orders," Opt. Express, Vol. 17, 13792-13809, 2009.
    doi:10.1364/OE.17.013792

    8. Berrocal, E., I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, "Image transfer through the complex scattering turbid media," Laser Phys. Lett., Vol. 3, 464-467, 2006.
    doi:10.1002/lapl.200610035

    9. Berrocal , E., D. Y. Churmakov, V. P. Romanov, M. C. Jermy, I. V. Meglinski, "Crossed source detector geometry for novel spray diagnostic: Monte Carlo simulation and analytical results," Appl. Opt., Vol. 44, 2519-2529, 2005.
    doi:10.1364/AO.44.002519

    10. Meglinski, I. V. and S. J. Matcher, "The analysis of spatial distribution of the detector depth sensitivity in multi-layered inhomogeneous highly scattering and absorbing medium by the Monte Carlo technique," Opt. Spectrosc., Vol. 91, 654-659, 2001.
    doi:10.1134/1.1412689

    11. Meglinski, I. V., "Modelling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highlyd scattering and absorbing media by the Monte Carlo technique," Quantum Electron., Vol. 31, 1101-1107, 2001.
    doi:10.1070/QE2001v031n12ABEH002108

    12. Churmakov, D. Y., I. V. Meglinski, D. A. Greenhalgh, "Amending of fluorescence sensor signal localization in human skin by matching of the refractive index," J. Biomed. Opt., Vol. 9, 339-346, 2004.
    doi:10.1117/1.1645796

    13. Meglinski, I. V., M. Kirillin, V. L. Kuzmin, and R. Myllyla, "Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method," Opt. Lett., Vol. 33, 1581-1583, 2008.
    doi:10.1364/OL.33.001581

    14. Kirillin, M. , I. Meglinski, E. Sergeeva, V. L. Kuzmin, and R. Myllyla, "Polarization sensitive optical coherence tomography image simulation by monte carlo modeling," Opt. Express, Vol. 18, 21714-21724, 2010.
    doi:10.1364/OE.18.021714

    15. Xu, M. and R. R. Alfano, "Random walk of polarized light in turbid media," Phys. Rev. Lett., Vol. 95, 213901, 2005.
    doi:10.1103/PhysRevLett.95.213901

    16. Kim, A. D. and M. Moscoso, "Backscattering of circularly polarized pulses," Opt. Lett., Vol. 27, 1589-1591, 2002.
    doi:10.1364/OL.27.001589

    17. Cai, , W., N. Xiaohui, S. R. Gayen, and R. R. Alfano, "Analytical cumulant solution of the vector radiative transfer equation investigates backscattering of circularly polarized light from turbid media," Phys. Rev.E, Vol. 74, 056605, 2006.
    doi:10.1103/PhysRevE.74.056605

    18. Sawicki, J., N. Kastor, and M. Xu, "Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers," Opt. Express, Vol. 16, 5728-5738, 2008.
    doi:10.1364/OE.16.005728

    19. Churmakov, D. Y. , V. L. Kuzmin, and I. V. Meglinski, "Application of the vector Monte-Carlo method in polarisation optical coherence tomography," Quantum Electron., Vol. 36, 1009-1015, 2006.
    doi:10.1070/QE2006v036n11ABEH013339

    20. Binzoni, T., T. S. Leung, and D. Van De Ville, "The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations," Phys. Med. Biol., Vol. 54, N303-N318, 2009.
    doi:10.1088/0031-9155/54/14/N03

    21. Sobol', I. M., The Monte Carlo Method, The University of Chicago Press, Chicago, 1974.

    22. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic, New York, 1978.

    23. Churmakov, D. Y. , I. V. Meglinski, and D. A. Greenhalgh, "Influence of refractive index matching on the photon diffuse reflectance," Phys. Med. Biol., Vol. 47, 4271-4285, 2002.
    doi:10.1088/0031-9155/47/23/312

    24. Kuzmin, V. L., I. V. Meglinski, and D. Y. Churmakov, "Stochastic modeling of coherent phenomena in strongly inhomogeneous media," J. Exp. Theor. Phys., Vol. 101, 22-32, 2005.
    doi:10.1134/1.2010658

    25. Kuzmin, , V. L. and and I. V. Meglinski, "Coherent effects of multiple scattering for scalar and electromagnetic fields: Monte-Carlo simulation and Milne-like solutions," Opt. Commun., Vol. 273, 307-310, 2007.
    doi:10.1016/j.optcom.2007.01.025

    26. Eddowes, M. H. , T. N. Mills, and D. T. Delpy, "Monte Carlo simulations of coherent backscatter for identification of the optical coe±cients of biological tissues in vivo," Appl. Opt., Vol. 34, 2261-2267, 1995.
    doi:10.1364/AO.34.002261

    27. Amic, E. , J. M. Luck, and T. M. Nieuwenhuizen, "Multltiple rayleigh scattering of electromagnetic waves," J. Phys. I, Vol. 7, 445-483, 1997.
    doi:10.1051/jp1:1997170

    28. Kuzmin, V. L. and E. V. Aksenova, "A generalized milne solution for the correlation effects of multiple light scattering with polarization," J. Exp. Theor. Phys., Vol. 96, 816-831, 2003.
    doi:10.1134/1.1581936

    29. Mishchenko, M. I. , L. D. Travis, and A. A. Lacis, "Multiple Scattering of Light by particles," Cambridge University Press, 2006.

    30. Akkermans, E., P. E. Wolf, and R. Maynard, "Theoretical-study of the coherent backscattering of light by disordered media," J. Phys. (Fr.), Vol. 49, 77-98, 1988.
    doi:10.1051/jphys:0198800490107700

    31. Wiersma, D. S., M. P. Van Albada, B. A. Van Tiggelen, and A. Lagendijk, "Experimental evidence for recurrent multiple scattering events of light in disordered media," Phys. Rev. Lett., Vol. 74, 4193-4196, 1995.
    doi:10.1103/PhysRevLett.74.4193