Vol. 16

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-01-23

Spinor and Hertzian Differential Forms in Electromagnetism

By Pierre Hillion
Progress In Electromagnetics Research M, Vol. 16, 197-211, 2011
doi:10.2528/PIERM10111501

Abstract

The purpose of this paper is to extend to spinor electromagnetism the differential forms, based on the Cartan exterior derivative and originally developed for tensor fields, in a very compact way. To this end, differential electromagnetic forms are first compared to conventional tensors. Then, using the local isomorphism between the O (3,C) and SL (2,C) groups supplying the well known connection between complex vectors and traceless second rank spinors, they are generalized to spinor electromagnetism and to Proca fields. These differential forms are finally expressed in terms of Hertz potentials.

Citation


Pierre Hillion, "Spinor and Hertzian Differential Forms in Electromagnetism," Progress In Electromagnetics Research M, Vol. 16, 197-211, 2011.
doi:10.2528/PIERM10111501
http://www.jpier.org/PIERM/pier.php?paper=10111501

References


    1. Cartan, E., Lecons sur les Invariants Integraux, Hermann, Paris, 1958.

    2. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1976.

    3. Jones, D. S., Acoustic and Electromagnetic Waves, Clarendon, Oxford, 1986.

    4. Moller, C., The Theory of Relativity, Clarendon, Oxford, 1952.

    5. Eddington , A. S., The Mathematical Theory of Relativity, University Press, Cambridge, 1951.

    6. De Rham, "Differential Manifolds," Springer, 1984.

    7. Misner, C. W. , K. S. Thorne, and J. A. Wheeler, Gravitation, , W. H. Freeman, San Francisco, 1973.

    8. Meetz, L and W. L. Engl, Electromagnetic Felder, Springer, Berlin, 1980.

    9. Deschamps, G. A., "Electromagnetism and differential forms," IEEE Proceedings, Vol. 69, 676-696, 1981.
    doi:10.1109/PROC.1981.12048

    10. Hehl, , F. W. and Y. Obhukov, Foundations of Classical Electrodynamics, Birkhauser, Basel, 2003.
    doi:10.1007/978-1-4612-0051-2

    11. Hehl, F. W., "Maxwell's equations in Minkowski's world," Annalen. der Physik, Vol. 17, 691-704, 2008.
    doi:10.1002/andp.200810320

    12. Warnick, K. F. and P. Russer, "Two, three and four dimensional electromagnetism using differential forms," Turkish Journal of Electrical. Engineering, Vol. 14, 151-172, 2006.

    13. Lindell, I. V., Differential Forms in Electromagnetism, Wiley IEEE, Hoboken, 2004.
    doi:10.1002/0471723096

    14. Bossavit , A., "Differential forms and the computation of fields and forces in electromagnetism," European Journal of Mechanics B, Fluids, Vol. 10, 474-488, 1991.

    15. Stern, A. , Y. Tong, M. Desbrun, and J. E. Marsden, "Variational integrators for Maxwell's equations with sources," PIERS Online, Vol. 4, No. 7, 711-715, 2008.
    doi:10.2529/PIERS071019000855

    16. Russer, P., "Geometrical concepts in teaching electromagnetics," Course, Nottingham available on Google; See also: P. Russer,Electromagnetic Circuit and Antenna Design for Communications Engineering, Artech House, Boston, 2006.

    17. Post, E. J., Formal Structure of Electromagnetism, North Holland, Amsterdam, 1962.

    18. Cartan, E., "Lecons sur la theorie des Spineurs," Hermann, Paris, 1938.

    19. Corson, E. M., Introduction to Spinors, Tensors and Relativistic Wave Equations, Blackie & Sons, London, 1954.

    20. Penrose, R. and W. Rindler, Spinors and Space-time, University Press, Cambridge, 1968.

    21. Laporte, O. and G. E. Uhlenbeck, "Application of spinor analysis to the Maxwell and Dirac equations," Physical Review, Vol. 37, 1380-1387, 1931.
    doi:10.1103/PhysRev.37.1380

    22. Hillion, P. and S. Quinnez, "Proca and electromagnetic fields," International Journal of Theortetical Physics, Vol. 25, 727-733, 1986.
    doi:10.1007/BF00668718

    23. Mustafa, E. and J. M. Cohen, "Hertz and Debye potentials and electromagnetic fields in general relativity," Classical and Quantum Gravity, Vol. 4, 1623-1631, 1987.
    doi:10.1088/0264-9381/4/6/020

    24. Olmsted, J. M. H., "Advanced Calculus," Appleton-Century Crofts, 1961.

    25. Dautray, R. and J. L. Lions, Analyse Mathematique et Calcul Numerique Pour les Sciences et Les Techniques, Masson, Paris, 1985.

    26. Bossavit, A., Computational Electromagnetism, Academic Press, San Diego, 1997.

    27. Ren, Z. and A. Razeh, "Computation of the 3D electromagnetic field using differential forms based elements and dual formalism," International Journal of Numerical Modelling, Vol. 9, 81-96, 1996.
    doi:10.1002/(SICI)1099-1204(199601)9:1/2<81::AID-JNM229>3.0.CO;2-J

    28. Ren, Z. and A. Bossavit, "A new approach to eddy current problems and numerical evidence of its validity," International Journal of Applied Electromagnetics in Materials, Vol. 3, 39-46, 1992.

    29. Hillion, P., "The Wilsons' experiment," Apeiron, Vol. 6, 1-8, 1999.

    30. Hillion, P. and S. Quinnez, "Diffraction patterns of circular and rectangular apertures in the spinor formalism of electromagnetism," Journal of Optics, Vol. 16, 5-19, 1985.
    doi:10.1088/0150-536X/16/1/001

    31. Penrose, R., "Twitor algebra," J. Math. Phys., Vol. 8, 345-367, 1967.
    doi:10.1063/1.1705200

    32. Witten, E., "Perturbative gauge theory as a string theory in twistor space," Comm. Math. Phys., Vol. 252, 189-258, 2004.
    doi:10.1007/s00220-004-1187-3

    33. Oliveira, C. C. and de Amaral C. Marcio, "Spinor formalism in gravitation," II Nuovo Cimento., Vol. 47, No. 1, 9-18, 1967.
    doi:10.1007/BF02771370

    34. Berkovitz, N., "Explaining the pure spinor formalism for the superstring," Journal of the High Energy Physics, Vol. 2008, 2008.
    doi:10.1088/1126-6708/2008/01/009

    35. Mafra, C. R., "Superstring amplitude in the pure spinor ormalism," Nuclear Physics B, Vol. 171, 292-294, 2007.

    36. Stratton, J. A., Electromagnetic Theory, Mac Graw Hill, New York, 1941.

    37. Felsen, L. B. and N. Marcuwitz, Radiation and Scattering of Waves, Wiley, Hoboken, 2003.

    38. Hillion, P., "Hertz potentials in Boys-Post isotropic chiral media ," Physica. Scripta, Vol. 75, 404-406, 2007.
    doi:10.1088/0031-8949/75/4/003

    39. Hillion, P., "Hertz potentials in uniaxially anisotropic media," Journal of Phsyics A: Mathematical Theory, Vol. 41, 365401, 2008.
    doi:10.1088/1751-8113/41/36/365401

    40. Mc Crea , W. H., "Hertzian electromagnetic potentials," Proceedings Royal Society A, Vol. 290, 447-457, London, 1957.

    41. Essex, E. A., "Hertz vectror potentials of electromagnetic theory," American Journal of Physics, Vol. 45, 1099-1101, 1977.
    doi:10.1119/1.10955

    42. Cough, W., "An alternative approach to Hertz vectors," Progress In Electromagnetic Research, Vol. 12, 205-217, 1996.

    43. Wu, A. C. T., "Debye scalar potentials for electromagnetic fields," Physical Review, Vol. 34, 3109-3114, 1986.

    44. Lindell, I. V., "Potential representation of electromagnetic fields in decomposable anisotropic media," Journal of Physics D, Vol. 33, 3169-3172, 2001.

    45. Weiglhofer, W. S., "Isotropic chiral media and scalar Hertz potentials," Journal of Physics A: Mathematics, General, Vol. 21, 2249-2251, 1988.
    doi:10.1088/0305-4470/21/9/036

    46. Przezriecki, S. S. and R. A. Hurd, "A note on scalar Hertz potentials for gyrotropic media," Applied Physics, Vol. 20, 313-317, 1979.
    doi:10.1007/BF00895002

    47. Hillion, P., "Self-dual electromagnetism in isotropic media," Nuovo. Cimento., Vol. 121B, 11-25, 2006.

    48. Synge, J. L., Relativity: The Special Theory, North-Holland, Amsterdam, 1958.

    49. Christianto, V., F. L. Smarandache, F. Lichtenberg, and , "A note on extended Proca equation," Progress in Physics, Vol. 1, 40-44, 2009.