Vol. 17

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-02-24

Efficient Simulations of Periodic Structures with Oblique Incidence Using Direct Spectral FDTD Method

By Yong-Jin Zhou, Xiaoyang Zhou, Tie-Jun Cui, Rui Qiang, and Ji Chen
Progress In Electromagnetics Research M, Vol. 17, 101-111, 2011
doi:10.2528/PIERM11012501

Abstract

A simple and efficient joint algorithm of finite difference time domain (FDTD) and periodic boundary condition (PBC), called as the direct spectral FDTD method, has been investigated to study three-dimensional (3D) periodic structures with oblique incidence, where both the azimuth angle φ and the elevation angle θ are varying. The number of sampling points for the horizontal wave number can be determined by using an adaptive approach. As numerical results, the transmission and reflection coefficients from split-ring resonators (SRRs) and a dielectric grating slab are computed to validate the accuracy and efficiency of the direct spectral FDTD method. The computed results are in good agreement to the published ones obtained by other methods.

Citation


Yong-Jin Zhou, Xiaoyang Zhou, Tie-Jun Cui, Rui Qiang, and Ji Chen, "Efficient Simulations of Periodic Structures with Oblique Incidence Using Direct Spectral FDTD Method," Progress In Electromagnetics Research M, Vol. 17, 101-111, 2011.
doi:10.2528/PIERM11012501
http://www.jpier.org/PIERM/pier.php?paper=11012501

References


    1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Norwood, 2005.

    2. Veysoglu, M. E., R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique incident case," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 12, 1595-1607, 1993.
    doi:10.1163/156939393X00020

    3. Kao, Y. C. A. and R. G. Atkins, "A finite difference-time domain approach for frequency selective surfaces at oblique incidence," Proc. IEEE AP-S Int. Symp., Vol. 2, 1432-1435, 1996.

    4. Roden, J. A. , S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, "Time-domain analysis of periodic structures at oblique incidence: Orthogonal and nonorthogonal FDTD implementations," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 4, 420-427, 1998.
    doi:10.1109/22.664143

    5. Belkhir, A. and F. I. Baida, "Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: Application to the study of a radar dome," Physical Review E, Vol. 77, No. 5, 056701, 2008.
    doi:10.1103/PhysRevE.77.056701

    6. Mohammad Amjadi, S. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
    doi:10.2528/PIERB07122402

    7. Aminian, A. and Y. Rahmat-Samii, "Spectral FDTD: A novel computational technique for the analysis of periodic structures," Proc. IEEE AP-S Int. Symp., Vol. 3, 3139-3142, 2004.

    8. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "A novel implementation of modified Maxwell's equations in the periodic finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 59, 85-100, 2006.
    doi:10.2528/PIER05092601

    9. Zheng, G. , A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Implementation of mur's absorbing boundaries with periodic structures to speed up the design process using fiite-difference time-domain method," Progress In Electromagnetics Research, Vol. 58, 101-114, 2006.
    doi:10.2528/PIER05062103

    10. Ren, J. , O. P. Gandhi, L. R. Walker, J. Fraschilla, and C. R. Boerman, "Floquent-based FDTD analysis of two-dimensional phased array antennas," IEEE Microwave and Guided Wave Lett., Vol. 4, No. 4, 109-111, 1994.
    doi:10.1109/75.282575

    11. Harms, P., R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propagat., Vol. 42, No. 9, 1317-1324, 1994.
    doi:10.1109/8.318653

    12. Aminian, A. , F. Yang, and Y. Rahmat-Samii, "Bandwidth determination for soft and hard ground planes by spectral FDTD: A unified approach in visible and surface wave regions," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 18-28, 2005.
    doi:10.1109/TAP.2004.840517

    13. Yang, F., J. Chen, R. Qiang, and A. Elsherbeni, "A simple and efficient FDTD/PBC algorithm for periodic structure analysis," Radio Science, Vol. 42, No. 4, RS4004, 2007.
    doi:10.1029/2006RS003526

    14. Yang, F. , J. Chen, R. Qiang, and A. Elsherbeni, "FDTD analysis of periodic structures at arbitrary incidence angles: A simple and e±cient implementation of the periodic boundary conditions," Proc. IEEE AP-S Int. Symp., Vol. 3, 2715-2718, 2006.

    15. Attiya, A. M. and A. A. Kishk, "Modal analysis of a two-dimensional dielectric grating slab excited by an obliquely incident plane wave," Progress In Electromagnetics Research, Vol. 60, 221-243, 2006.
    doi:10.2528/PIER05110602

    16. Attiya, A. M., A. A. Kishk, and A. W. Glisson, "Analysis of two-dimensional magneto-dielectric grating slab," Progress In Electromagnetics Research, Vol. 74, 195-216, 2007.
    doi:10.2528/PIER07042201

    17. Tibuleac, S., R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, "Dielectric frequency-selective structures Dielectric frequency-selective structures," IEEE Trans. Microwave Theory Tech., Vol. 48, 553-561, 2000.
    doi:10.1109/22.842027