Vol. 18
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-04-07
Comparative Studies of the Rain Attenuation Predictions for Tropical Regions
By
Progress In Electromagnetics Research M, Vol. 18, 17-30, 2011
Abstract
The radio waves propagating through the earth atmosphere will be attenuated due to the presence of atmosphere particles, such as water vapor, water drops and the ice particles. Meanwhile, the atmospheric gases and rain will both absorb and scatter the radio waves, and consequently degrade the performance of the link. The results of various studies conducted in temperate and tropical regions have been published in research papers. This paper presents the summary of comparative studies on different rain attenuation prediction methods for terrestrial microwave links tropical regions. Basically the models described in this paper include those of the ITU-R, revised Moupfouma, revised Silva Mello and Lin model. The objective of this study is to reveal the most suitable rain attenuation prediction model for the Malaysian tropical region. This paper will provide useful information for microwave engineers and researchers in making decision over the choice of most suitable rain attenuation prediction for terrestrial links operating in a tropical region. Even though the ITU-R model underestimates the rain attenuation at higher frequencies, the test results have clearly indicated that it is most suitable for predicting terrestrial rain attenuation in tropical Malaysia, compared to others.
Citation
Kesavan Ulaganathen Tharek Bin Abdul Rahman Amuda Yusuf Abdulrahman Sharul Kamal Bin Abd Rahim , "Comparative Studies of the Rain Attenuation Predictions for Tropical Regions," Progress In Electromagnetics Research M, Vol. 18, 17-30, 2011.
doi:10.2528/PIERM11012602
http://www.jpier.org/PIERM/pier.php?paper=11012602
References

1. Crane, R. K., "Prediction of attenuation by rain," IEEE Transactions on Communication, Vol. 28, No. 9, September 1980.
doi:10.1109/TCOM.1980.1094844

2. Panagopoulos, D., P. D. M. Arapoglou, and P. G. Cottis, "Satellite communications at Ku, Ka and V bands: Propagation impairments and mitigation techniques," IEEE Communications Surveys and Tutorials, Vol. 6, No. 3, 2-14, 2004.
doi:10.1109/COMST.2004.5342290

3. Kanellopoulos, J. D. , S. G. Kouleoulas, N. J. Kolliopoulos, C. N. Capsalis, and S G. Ventouras, "Rain attenuation problems affecting the performance of microwave communication systems," Ann Telecommunication, Vol. 45, No. 7-8, 1990.

4. Sakarellos, V. K., D. Skraparlis, A. D. Panagopoulos, and J. D. Kanellopoulos, "Outage performance analysis of a dual-hop radio delay system operating at frequencies above 10 GHz," IEEE Transactions on Communications, Vol. 58, No. 11, November 2010.

5. Panagopoulos, A. D. and J. D. Kanellopoulos, "Adjacent satellite interference e®ects as applied to the outage performance of an earth-space system located in a heavy rain climatic region," Annals of Telecommunications, No. 9-10, 925-942, 2002.

6. Skraparlis, D., , V. K. Sakarellos, A. D. Panagopoulos, and J. D. Kanellopoulos, "Satellite and terrestrial diversity reception performance in tropical regions," International Workshop on Satellite and Space Communications, IWSSC 2009, 403-406, Siena, Italy, September 9-11, 2009.

7. Morita, K. and I. Higutti, "Prediction methods of rain attenuation distributions of micro and millimeter waves," Rev. of ECL, Vol. 24, No. 7-8, 651-668, 1976.

8. Crane, R. K., Propagation Handbook for Wireless Communication System Design, CRC Press LLC, 2003.
doi:10.1201/9780203506776

9. Sakarellos, V. K., D. Skraparlis, A. D. Panagopoulos, and J. D. Kanellopoulos, "Optimum placement of radio relays in Optimum placement of radio relays in millimeter wave wireless dual-hop networks," IEEE Antennas & Propagation Magazine, Wireless Corner, Vol. 51, No. 2, 190-199, April 20.
doi:10.1109/MAP.2009.5162063

10. Mandeep, J. S. and K. Tanaka, "Effects of atmospheric parameters on satellite link," Int. J. Infrared Milli. Waves, Vol. 28, 789-795, 2007.
doi:10.1007/s10762-007-9269-x

11. Singh, M. S. J., S. I. S. Hassan, M. F. Ain, K. Igarashi, K. Tanaka, and M. Iida, "Rain attenuation model for south east Asia countries," IET Electronic Letters, Vol. 43, No. 2, 75-77, 2007.
doi:10.1049/el:20072677

12. Ramachandran, V. and V. Kumar, "Invariance of accumulation time factor of Ku-band signals in the tropics," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1501-1509, 2005.
doi:10.1163/156939305775701868

13. Crane, R. K., Electromagnetic Wave Propagation through Rain, Chapters 1{4, A Wiley-Inter Science Publication, New York, 1996.

14. Recommendation ITU-R P.530-13 (10/2009), "Propagation data and prediction methods required for the design of terrestrial line of sight systems,", October 2009.

15. Singh, M. S. J. , S. I. S. Hassan, M. F. Ain, K. Igarashi, K. Tanaka, and M. Iida, "Proposed rain attenuation model revised from ITU used for prediction in tropical climate," Research Journal of Applied Sciences, Vol. 2, No. 1, 81-88, 2007.

16. Moupfouma, F., "Electromagnetic waves attenuation due to rain: A prediction model for terrestrial or L.O.S SHF and EHF radio communication," J. Infrared Milli Terahz Waves, Vol. 30, 622-632, 2009.
doi:10.1007/s10762-009-9481-y

17. Silva Mello, L. A. R. , M. S. Pontes, R. S. L. Souza, and N. A. Garcia, "Prediction of rain attenuation in terrestrial link Prediction of rain attenuation in terrestrial link," Electron Lett., Vol. 43, No. 25, 1442-1443, 2007.
doi:10.1049/el:20072410

18. Lin, S. H., "National long term rain statistics and empirical calculation of 11 GHz microwave rain attenuationcalculation of 11 GHz microwave rain attenuation," The Bell System Technical Journal, Vol. 56, No. 9, 1581-1581, 1977.

19., "Acquisition, presentation and analysis of data in studies of troposphere propagation,", Recommendation ITU-R P.311-13, ITU-R P Series, October 2009.