Vol. 17

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

GPU Approach for Hertzian Potential Formulation Tool Oriented on Electromagnetic Nanodevices

By Daniele Tartarini and Alessandro Massaro
Progress In Electromagnetics Research M, Vol. 17, 135-150, 2011


The time domain modeling and simulation of electromagnetic (EM) waves interaction with nanodevices, at high spatial and time resolution, requires high computational power. For the first time, in this paper we present an effective implementation of the Hertzian Potential Formulation (HPF) on the Graphics Processing Units (GPUs), through the NVIDIA's CUDA (Compute Unified Device Architecture) programming model. It accelerates the nanodevice EM simulations at nanometer scale harnessing the massive parallelism of the GPU based systems. This study is useful for similar electromagnetic codes including the Finite Difference approaches. The results demonstrate that this GPU tool outperforms the CPU based HPF implementation, reaching a speedup from 30× to 70×.


Daniele Tartarini and Alessandro Massaro, "GPU Approach for Hertzian Potential Formulation Tool Oriented on Electromagnetic Nanodevices," Progress In Electromagnetics Research M, Vol. 17, 135-150, 2011.


    1. Massaro, A., M. Grande, R. Cingolani, A. Passaseo, and M. De Vittorio, "Design and modelling of tapered waveguide for photonic crystal slab coupling by using time-domain Hertzian potential formulation," Opt. Express, Vol. 15, No. 25, 16484-16499, 2007.

    2. VanRoey, J. , J. van Derdonk, and P. Lagasse, "Beam-propagation method: Analysis and assessment," J. Opt. Soc. Am., Vol. 71, 803-810, 1981.

    3. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagation, Vol. 14, No. 8, 302-307, 1966.

    4. Massaro, A. and T. Rozzi, "Rigorous time-domain analysis of dielectric optical waveguides using Hertzian potentials formulation," Opt. Express, Vol. 14, No. 5, 2027-2036, 2006.

    5. Massaro, A. , V. Tasco, M. T. Todaro, R. Cingolani, M. De Vittorio, and A. Passaseo, "Scalar time domain modeling and coupling of second harmonic generation process in gaas discontinuous optical waveguides," Opt. Express, Vol. 16, No. 19, 14496-14510, 2008.

    6. Owens, J. D. , et al., "GPU computing," Proceedings of the IEEE, Vol. 96, No. 5, 879-899, May 2008.

    7. Nickolls, J. and W. J. Dally, "The GPU computing era," IEEE Micro., Vol. 30, 56-69, 2010.

    8. Huang, S. , S. Xiao, and W. Feng, "On the energy efficiency of graphics processing units for scientific computing," IEEE International Symposium on Parallel & Distributed Processing, 1-8, 2009.

    9. Krakiwsky, S. E. , L. E. Turner, and M. M. Okoniewski, "Acceleration of finite-difference time-domain (FDTD) using graphics processor units (GPU)," IEEE MTT-S Int. Microwave Symp. Digest, 1033-1036, 2004.

    10. Peng, S. X. and Z. P. Nie, "Acceleration of the method of moments calculations by using graphics processing units," IEEE Trans. Antennas and Propagation, Vol. 56, No. 7, 2130-2133, Jul. 2008.

    11. Zainud-Deen, S. H. , E. El-Deen, M. S. Ibrahim, K. H. Awadalla, and A. Z. Botros, "Electromagnetic scattering using gpu-based ¯nite di®erence frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009.

    12. Jiang, , W. Q., M. Zhang, and Y. Wang, "CUDA-based radiative transfer method with application to the EM scattering from a twolayer canopy model," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2509-2521, 2010.

    13. Xu, K. , Z. H. Fan, D. Z. Ding, and R. S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.

    14. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromagn. Compat., Vol. 23, 377-382, 1981.

    15. Taflove, A. and S. C. Hagness, Computational Electrody-namic: The Finite-difference Time-domain Method, 2nd Ed., Chaps. 2, 4, and 7, Arthec House Publishers, London, 2000.

    16. Lindholm, E , J. Nickolls, S. Oberman, and J. Montrym, "NVIDIA Tesla: A unified graphics and computing architecture," IEEE Micro., Vol. 28, 39-55, 2008.

    ., , NVIDIA CUDA C Programming guide v.3.2. Nvidia Corp., 2010.

    18., , NVIDIA CUDA C Best Practices guide v.3.2. Nvidia Corp., 2010.

    19. Patterson, D. A. and J. L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface," Morgan Kaufmann, 2008.

    20. Kirk, D. B. and W.-M. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Morgan Kaufmann, 2010.

    21. Ryoo , S. , C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-M. W. Hwu, "Optimization principles and application performance evaluation of a multithreaded GPU using CUDA," Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, 73-82, New York, USA, 2008.

    22. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBM Journal of Research and Development, Vol. 11, No. 2, 215-234, 1967.