Vol. 18
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-05-24
A Super-Resolution Near-Field Scattering Centers Extraction Method for Spherical Wavefront Curvature Compensation
By
Progress In Electromagnetics Research M, Vol. 18, 131-141, 2011
Abstract
While a radar target is illuminated under the condition of spherical wave, two-dimensional ISAR image can be obtained in near field, and the wavefront curvature must be compensated. A novel two-dimensional mathematical model is set up, and a 2D-ESPRIT super-resolution algorithm based on matrix pencil is applied to estimate the accurate locations of the scattering centers in near field. Numerical simulations are conducted in different distances as well as with different SNRs. It is proved that the method can revise the spherical wavefront curvature with a high accuracy. Finally, near field ISAR imaging experiments were done outdoor, and raw data were processed with this super-resolution method, which verify that 2D-ESPRIT algorithm based on matrix pencil can compensate the spherical wavefront curvature effectively in near field.
Citation
Weidong Hu Rong Liu Chao Wu Chengyun Shi , "A Super-Resolution Near-Field Scattering Centers Extraction Method for Spherical Wavefront Curvature Compensation," Progress In Electromagnetics Research M, Vol. 18, 131-141, 2011.
doi:10.2528/PIERM11032701
http://www.jpier.org/PIERM/pier.php?paper=11032701
References

1. Mensa, D. L., High Resolution Radar Cross Section Imaging, 458-462, Artech House, London, Boston, 1991.

2. Li, H.-J. and F.-L. Lin, "Near FIeld imaging for conducting objects," IEEE Trans. Antennas Propag., Vol. 39, No. 5, 600-605, 1991.
doi:10.1109/8.81486

3. LaHaie, I. J., E. I. L. Baron, and J. W. Burns, "Far FIeld radar cross-section (RCS) predictions from planar near FIeld measurements," IEEE AP-S Symp. Dig., 1542-1545, Chicago, 1992.

4. Broquetas, A., "Spherical wave near-field imaging and radar cross- section measurement," IEEE Trans. Antennas Propag., Vol. 46, No. 5, 730-735, 1998.
doi:10.1109/8.668918

5. Yuen, N. and B. Friedlander, "Performance analysis of higher order ESPRIT for localization of near-FIeld sources," IEEE Trans. Signal Processing, Vol. 46, No. 3, 709-719, 1998.
doi:10.1109/78.661337

6. Vaupel, T. and T. F. Eibert, "Comparison and application of near-field ISAR imaging techniques for far-field radar cross section determination," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 144-151, 2006.
doi:10.1109/TAP.2005.861549

7. Haardt, M., R. N. Challa, and S. Shamsunder, "Improved bearing and range estimation via high-order subspace based Unitary ESPRIT," Proc. 30th Asilomar Conference on Signals, Systems and Computers, Vol. 1, 380-384, 1996.

8. Van der Veen, A. J., P. B. Ober, and E. F. Deprettere, "Azimuth and elevation computation in high resolution DOA estimation," IEEE Trans. Signal Processing, Vol. 40, No. 7, 1828-1832, 1992.
doi:10.1109/78.143456

9. Van der Veen, A. J. and E. F. Deprettere, "Parallel VLSI matrix pencil algorithm for high resolution direction fingding," IEEE Trans. Signal Processing, Vol. 39, No. 2, 383-394, 1991.
doi:10.1109/78.80822

10. Li, H.-J., et al., "Image understanding and interpretation in microwave diversity imaging," IEEE Trans. Antennas Propag., Vol. 37, No. 8, 1048-1057, 1989.
doi:10.1109/8.34143

11. Peixoto, G. G., M. A. Alves, I. M. Martin, M. C. de Rezende, and A. Medium, "A medium open range radar cross section facility in Brazil," PIERS Online, Vol. 5, No. 4, 381-384, 2009.
doi:10.2529/PIERS090220150508

12. Martin, I. M., M. A. Alves, G. G. Peixoto, and M. C. Rezende, "Radar cross section measurements and simulations of a model airplane in the X-band," PIERS Online, Vol. 5, No. 4, 377-380, 2009.
doi:10.2529/PIERS090220150258