Vol. 18
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-06-07
A Three-Dimensional Time Domain Microwave Imaging Method for Breast Cancer Detection Based on an Evolutionary Algorithm
By
Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011
Abstract
This paper presents a novel stochastic microwave method for the detection, location and reconstruction of electric properties of breast cancer in a simplified breast phantom. The method is based on the inversion of time domain data. The problem is recast as an optimization one by defining a suitable cost function which is then minimized using an efficient evolutionary algorithm. Selected numerical simulations of a simplified three dimensional breast model and a realistic numerical phantom based on magnetic resonance images (MRIs) are carried out to assess the capabilities of the method. The results obtained show that the proposed method is able to reconstruct the properties of a tumor-like inclusion to a reasonable degree of accuracy.
Citation
Massimo Donelli Ian J. Craddock David Gibbins Mantalena Sarafianou , "A Three-Dimensional Time Domain Microwave Imaging Method for Breast Cancer Detection Based on an Evolutionary Algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011.
doi:10.2528/PIERM11040903
http://www.jpier.org/PIERM/pier.php?paper=11040903
References

1. Tang, J., R. M. Rangayyan, J. Xu, I. El Naqa, and Y. Yang, "Computer-aided detection and diagnosis of breast cancer with mammography: Recent advances," IEEE Trans. Inf. Technol. Biomed., Vol. 13, No. 2, 236-251, 2009.
doi:10.1109/TITB.2008.2009441

2. Fang, Q., et al., "Initial clinical experience with microwave breast imaging in woman with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

3. O'Halloran, M., E. Jones, and M. Glavin, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Trans. Biomed. Eng., Vol. 57, No. 4, 830-840, 2010.
doi:10.1109/TBME.2009.2016392

4. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array experimental results," IEEE Trans. Antennas Propagat., Vol. 57, No. 6, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856

5. Kurrant, D. J. and E. Fear, "An improved technique to predict the time-of-arrival of a tumor response in radar-based breast imaging," IEEE Trans. Biomed. Eng., Vol. 56, No. 9, 1200-1209, 2009.
doi:10.1109/TBME.2008.2011914

6. Li, X., S. Hagness, D. B. Van Deen, and D. Van Den Weide, "Experimental investigation of microwave imaging via space-time beamforming for breast cancer detection," Proc. IEEE International Microwave Symposium, Vol. 1, 379-382, 2003.

7. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veeenm, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas Propagat., Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446

8. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759

9. Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "A wideband planar antenna for in-body imaging," IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting, Washington DC, Jul. 2005.

10. Klemm, M., J. A. Leendertz, D. Gibbins, I. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1349-1352, 2009.
doi:10.1109/LAWP.2009.2036748

11. Chen, Y., I. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Multiple-input multiple-output radar for lesion classification in ultrawideband breast imaging," IEEE Journal of Signal Processing, Vol. 4, No. 1, 187-201, 2010.

12. Rubk, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using GaussNewton's method and the CGLS inversion algorithm," IEEE Trans. Antennas Propagat., Vol. 55, No. 8, 2320-2331, 2007.
doi:10.1109/TAP.2007.901993

13. Meaney, P., M. W. Fanning, R. M. Di Florio-Alexander, P. A. Kaufman, S. D. Geimer, T. Zhou, and K. D. Paulsen, "Microwave tomography in the context of complex breast cancer imaging," 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3398-3401, 2010.
doi:10.1109/IEMBS.2010.5627932

14. Fang, Q., P. Meaney, S. Geimer, A. Streltsov, and K. Paulsen, "Microwave image recostruction from 3-D field coupled to 2-D parameter estimation," IEEE Trans. Biomed. Eng., Vol. 23, No. 4, 475-484, 2004.

15. Johnson, J. E., T. Takenaka, and T. Tanaka, "Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition," IEEE Trans. Biomed. Eng., Vol. 55, No. 8, 1941-1945, 2008.
doi:10.1109/TBME.2007.899364

16. Johnson, J. E., T. Takenaka, and T. Tanaka, "Experimental three- dimensional time-domain reconstruction of dielectric objects for breast cancer detection," Proc. Mediterr. Microw. Symp., 423-426, 2006.

17. Johnson, J. E., T. Takenaka, K. A. Hong Ping, S. Honda, and T. Tanaka, "Advances in the 3-D forward-backward time-stepping (FBTS) inverse scattering technique for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 56, No. 9, 2232-2243, 2009.
doi:10.1109/TBME.2009.2022635

18. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimen- sional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001

19. Samii, Y. R. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley, New York, 1999.

20. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems," Inverse Problems, Vol. 12, No. 25, 1999.

21. Donelli, M., A. Massa, G. Oliveri, M. Pastorino, and A. Randazzo, "A differential evolution based multi-scaling algorithm for microwave imaging of dielectric structures," Proceedings of IEEE International Conferences on Imaging Systems and Techniques, IST 2010, 90-95, 2010.
doi:10.1109/IST.2010.5548515

22. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068

23. Donelli, M., G. Franceschini, A. Martini, and A. Massa, "An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 2, 298-312, 2006.
doi:10.1109/TGRS.2005.861412

24. Tereshko, V. and A. Loengarov, "Collective decision-making in honey bee foraging dynamics," Computing and Information Systems Journal, Vol. 9, No. 3, 1352-9404, ISSN, 2005.

25. Massa, A., D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, "Parallel GA-based approach for microwave imaging applications," IEEE Trans. Antennas Propagat., Vol. 53, No. 10, 3118-3127, 2005.
doi:10.1109/TAP.2005.856311

26. Hoefer, W. J., "The transmission-line matrix method-theory and applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, 882-893, 1985.
doi:10.1109/TMTT.1985.1133146

27. Bonabeau, E., M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York, 1999.

28. Rocca, R., L. Manica, F. Stringari, and A. Massa, "Ant colony optimisation for tree-searching-based synthesis of monopulse array antenna," Electronics Letters, Vol. 44, No. 13, 783-785, 2008.
doi:10.1049/el:20081045

29. Karaboga, D. and B. Basturk, "A powerful and effcient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm," Journal Global Optim. Mathematics and Computation, Vol. 214, 108-132, 2009.

30. Karaboga, D. and B. Akay, "A comparative study of artificial bee colony algorithm," Journal Applied Mathematics and Computation, Vol. 214, 108-132, 2009.
doi:10.1016/j.amc.2009.03.090