Vol. 18
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-06-13
Analytical Model of a Metasurface Consisting of a Regular Array of Sub-Wavelength Circular Holes in a Metal Sheet
By
Progress In Electromagnetics Research M, Vol. 18, 209-219, 2011
Abstract
In this work, a metasurface consisting of an array of circular holes in a metal conducting sheet with a sub-wavelength periodicity is considered. The surface partially reflects the incident field according to the shape and geometrical dimensions of the inclusions and, due to this property, is widely employed in antenna systems to improve the radiation pattern of regular radiators. Since the reflection properties of the metasurface are determined by the current density distribution on the metal, we inspect this distribution and coherently develop a new, easy, and accurate analytical model to describe the grid impedance of the metasurface. In order to validate the model, we compare the reflection coefficient of the array obtained through our approach to the one resulting from full-wave numerical simulations and to other accurateanalytical methods available in the open technical literature.
Citation
Davide Ramaccia, Filiberto Bilotti, and Alessandro Toscano, "Analytical Model of a Metasurface Consisting of a Regular Array of Sub-Wavelength Circular Holes in a Metal Sheet," Progress In Electromagnetics Research M, Vol. 18, 209-219, 2011.
doi:10.2528/PIERM11050908
References

1. Bilotti, F., A. Toscano, and L. Vegni, "FEM-BEM formulation for the analysis of cavity backed patch antennas on chiral substrates," IEEE Trans. Antennas Propagat., Vol. 51, 306-311, 2003.
doi:10.1109/TAP.2003.809076

2. Bilotti, F., L. Vegni, and A. Toscano, "Radiation and scattering features of patch antennas with bianisotropic substrates," IEEE Trans. Antennas Propagat., Vol. 51, 449-456, 2003.
doi:10.1109/TAP.2003.809837

3. Scamarcio, G., F. Bilotti, A. Toscano, and L. Vegni, "Broad band U-slot patch antenna loaded by chiral material," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 10, 1303-1317, 2001.
doi:10.1163/156939301X01192

4. Bilotti, F., A. Alu, N. Engheta, and L. Vegni, "Anomalous properties of scattering from cavities partially loaded with double-negative or single-negative metamaterials," Progress In Electromagnetics Research, Vol. 51, 49-63, 2005.
doi:10.2528/PIER04041401

5. Bilotti, F., L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microw. Opt. Technol. Lett., Vol. 48, 2171-2175, 2006.
doi:10.1002/mop.21891

6. Bilotti, F., A. Toscano, L. Vegni, K. B. Alici, K. Aydin, and E. Ozbay, "Equivalent circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microw. Theory Tech., Vol. 55, 2865-2873, 2007.
doi:10.1109/TMTT.2007.909611

7. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Sub-wavelength planar leaky-wave components with metamaterial bilayers," IEEE Trans. Antennas Propagat., Vol. 55, 882-891, 2007.
doi:10.1109/TAP.2007.891844

8. Bilotti, F., S. Tricarico, and L. Vegni, "Electromagnetic cloaking devices for TE and TM polarizations," New J. Phys., Vol. 10, 115035, 2008.

9. Bilotti, F., A. Alu, and L. Vegni, "Design of miniaturized metamaterial patch antennas with μ-negative loading," IEEE Trans. Antennas Propagat., Vol. 56, 1640-1647, 2008.
doi:10.1109/TAP.2008.923307

10. Bilotti, F., A. Toscano, K. B. Alici, E. Ozbay, and L. Vegni, "Design of miniaturized narrowband absorbers based on resonant magnetic inclusions," IEEE Trans. Electromag. Comp., Vol. 53, 63-72, Feb. 2011.
doi:10.1109/TEMC.2010.2051229

11. Tretyakov, S. A., S. I. Maslovski, and P. A. Belov, "An analytical model of metamaterials based on loaded wire dipoles," IEEE Trans. Antennas Propagat., Vol. 51, 2652-2658, 2003.
doi:10.1109/TAP.2003.817557

12. Belov, P. A. and C. R. Simovski, "Subwavelength metallic waveguides loaded by uniaxial resonant scatterers," Phys. Rev. E, Vol. 72, 036618, 2005.

13. Guerin, N., S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A metallic Fabry-Perot directive antenna," IEEE Trans. Antennas Propagat., Vol. 54, 220-224, 2006.
doi:10.1109/TAP.2005.861578

14. Kumar, A. and H. D. Hristov, Microwave Cavity Antennas, Artech House, New York, 1989.

15. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2008.
doi:10.1017/CBO9780511754531

16. Viitanen, A. J., I. Hanninen, and S. A. Tretyakov, "Analytical model for regular dense arrays of planar dipole scatterers," Progress In Electromagnetics Research, Vol. 38, 97-110, 2002.
doi:10.2528/PIER02091601

17. Tretyakov, S., Analytical Modeling in Applied Electromagnetic, Artech House, Boston, 2003.

18. Yatsenko, V. V., S. A. Tretyakov, S. I. Maslovski, and A. A. Sochava, "Higher order impedance boundary conditions for sparse wire grids," IEEE Trans. Antennas Propagat., Vol. 48, No. 5, 720-727, 2000.
doi:10.1109/8.855490

19. Yatsenko, V., S. Maslovski, and S. Tretyakov, "Electromagnetic interaction of parallel arrays of dipole scatterers," Progress In Electromagnetics Research, Vol. 25, 285-307, 2000.
doi:10.2528/PIER99060401

20. Tretyakov, S. A. and A. Viitanen, "Line of periodically arranged passive dipole scatterers," Electrical Engineering, Vol. 82, 353-361, 2000.
doi:10.1007/s002020000046

21. Luukkonen, O., C. R. Simovsky, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips," IEEE Trans. Antennas Propagat., Vol. 56, 1624-1632, 2008.
doi:10.1109/TAP.2008.923327

22., CST Studio Suite 2010, Computer Simulation Technology,http://www.cst.com..

23. Marcuvitz, N., Waveguide Handbook, McGraw-Hill Book Company, 1951.

24. Compton, R. C., L. B. Whitbourn, and R. C. McPherdan, "Strip gratings at a dielectric interface and application of Babinet's principle," Appl. Opt., Vol. 23, 3236-3242, 1984.
doi:10.1364/AO.23.003236